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Abstract. In this paper, we investigate additive properties of the generalized Drazin inverse in a Banach
algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new
conditions on a, b ∈ A.

1. Introduction

LetA be a complex Banach algebra with the unit 1. ByA−1 andAqnil, we denote the sets of all invertible
and quasinilpotent elements inA, respectively. In a Banach algebraA, an element a ∈ A is quasinilpotent
when limn→∞ ‖an

‖
1/n = 0. Let us recall that the spectral radius of b ∈ A is given by r(b) = limn→∞ ‖bn

‖
1/n (see

e.g. [1, Ch. 1]) and it is satisfied that r(b) = max{|λ| : λ ∈ σ(b)}, where σ(b) is the spectrum of b, i.e., the set
composed of complex numbers λ such that b − λ1 is not invertible.

Let us recall that a generalized Drazin inverse of a ∈ A (introduced by Koliha in [8]) is an element x ∈ A
which satisfies

xax = x, ax = xa, a − a2x ∈ Aqnil. (1)

It can be proved that for a ∈ A the set of x ∈ A satisfying (1) is empty or a singleton ([8]). If this set is a
singleton, then we say that a is generalized Drazin invertible and x is denoted by ad. The setAd consits of
all a ∈ A such that ad exists. For interesting properties of the generalized Drazin inverse see [2, 4, 9–11]. For
a complete treatment of the generalized Drazin inverse, see [7, Ch. 2].

Let a ∈ A and let p ∈ A be an idempotent. We denote p = 1 − p. Then we can write

a = pap + pap + pap + pap.

Every idempotent p ∈ A induces a representation of an arbitrary element a ∈ A given by the following
matrix:

a =

[
pap pap
pap pap

]
p
.
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Let a ∈ Ad and aπ = 1 − aad be the spectral idempotent of a corresponding to 0. It is well known that
a ∈ A can be represented in the following matrix form ([7, Ch. 2])

a =

[
a1 0
0 a2

]
p
, (2)

where p = aad, a1 is invertible in the algebra pAp, ad is its inverse in pAp, and a2 is quasinilpotent in the
algebra pAp. Thus, the generalized Drazin inverse of a can be expressed as

ad =

[
ad 0
0 0

]
p
.

Obviously, if a ∈ Aqnil, then a is generalized Drazin invertible and ad = 0.
The motivation for this article is [3, 5, 6]. In these papers, the authors considered some conditions on

a, b ∈ A that allowed them to express (a + b)d in terms of a, ad, b, bd. Our aim in this paper is to investigate
the existence of the generalized Drazin inverse of the sum a + b and to give explicit expression for (a + b)d

under new conditions.

2. Main Results

A preliminary result witch will be used is the following:

Theorem 2.1. [3, Theorem 2.3] LetA be a Banach algebra, x, y ∈ A, and p ∈ A be an idempotent. Assume that x
and y are represented as

x =

[
a 0
c b

]
p
, y =

[
b c
0 a

]
p
.

(i) If a ∈ (pAp)d and b ∈ (pAp)d, then x and y are generalized Drazin invertible, and

xd =

[
ad 0
u bd

]
p
, yd =

[
bd u
0 ad

]
p
, (3)

where

u =

∞∑
n=0

(bd)n+2canaπ +

∞∑
n=0

bπbnc(ad)n+2
− bdcad. (4)

(ii) If x ∈ Ad and a ∈ (pAp)d, then b ∈ (pAp)d, and xd and yd are given by (3) and (4).

Theorem 2.2. [3, Corollary 3.4] LetA be a Banach algebra, b ∈ Ad, a ∈ Aqnil, and let ab = 0. Then a + b ∈ Ad and

(a + b)d =

∞∑
n=0

(bd)n+1an.

The conditions aπb = b and abaπ = 0 were used in [3, Theorem 4.1] to derive an expression of (a + b)d. In
Theorem 2.3, we will only use the condition abaπ = 0.
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Theorem 2.3. LetA be a Banach algebra and let a, b ∈ Ad such that abaπ = 0 and aadbaad
∈ A

d. Then a + b ∈ Ad

if and only if w = aad(a + b) ∈ Ad. In this case,

(a + b)d = wd +

∞∑
n=0

(bd)n+1anaπ −
∞∑

n=0

(bd)n+1anaπbwd

+

∞∑
n=0

 ∞∑
k=0

(bd)n+k+2ak

 aπbwnwπ + bπ
∞∑

n=0

(a + b)naπb(wd)n+2

−

∞∑
n=0

∞∑
k=0

(bd)k+1ak+1(a + b)naπb(wd)n+2.

Proof. Let p = aad. We can represent a as in (2), where a1 is invertible in the subalgebra pAp and a2 is
quasinilpotent. Hence,

ad =

[
ad 0
0 0

]
p
. (5)

Let us write

b =

[
b1 b2
b3 b4

]
p
. (6)

From abaπ = 0 we have

0 = abaπ =

[
a1 0
0 a2

]
p

[
b1 b2
b3 b4

]
p

[
0 0
0 aπ

]
p

=

[
0 a1b2
0 a2b4

]
p
.

Therefore, a1b2 = 0 and a2b4 = 0. Since a1 is invertible in pAp and b2 ∈ pA, we get b2 = 0. Hence

b =

[
b1 0
b3 b4

]
p
, a + b =

[
a1 + b1 0

b3 a2 + b4

]
p
.

Observe that w = aad(a + b) = a1 + b1.
Since b ∈ Ad and the hypothesis on b1 = aadbaad, by Theorem 2.1 we get that b4 ∈ A

d. By using the
quasinilpotency of a2 and a2b4 = 0, Theorem 2.2 leads to a2 + b4 ∈ A

d and

(a2 + b4)d =

∞∑
n=0

(bd
4)n+1an

2 .

Thus, by Theorem 2.1, a + b is generalized Drazin invertible if and only if w = a1 + b1 is generalized Drazin
invertible. In this situation, we obtain

(a + b)d =

[
wd 0
u (a2 + b4)d

]
p

= wd + u + (a2 + b4)d.

and

u =

∞∑
n=0

((a2 + b4)d)n+2b3wnwπ +

∞∑
n=0

(a2 + b4)π(a2 + b4)nb3(wd)n+2
− (a2 + b4)db3wd.

We have

(bd)n+1anaπ =

[
(bd

1)n+1 0
∗ (bd

4)n+1

]
p

[
an

1 0
0 an

2

]
p

[
0 0
0 aπ

]
p

=

[
0 0
0 (bd

4)n+1an
2

]
p

= (bd
4)n+1an

2 .
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Also,

∞∑
n=0

(bd)n+1anaπbwd =

∞∑
n=0

(bd
4)n+1an

2bwd = (a2 + b4)dbwd

=

[
0 0
0 (a2 + b4)d

]
p

[
b1 0
b3 b4

]
p

[
wd 0
0 0

]
p

= (a2 + b4)db3wd.

In a similar way, we get

aπbwnwπ = b3wnwπ. (7)

Now, we will find an expression for (a2 + b4)π. To this end, we use a2b4 = 0. Let us recall that a2, b4 are
elements in the subalgebra pAp, where p = 1 − p = 1 − aad = aπ.

(a2 + b4)π = aπ − (a2 + b4)(a2 + b4)d = aπ − (a2 + b4)
[
bd

4 + (bd
4)2a2 + (bd

4)3a2
2 + · · ·

]
= aπ −

[
b4bd

4 + b4(bd
4)2a2 + b4(bd

4)3a2
2 + · · ·

]
= bπ4 −

[
bd

4a2 + (bd
4)2a2

2 + · · ·
]
,

and so,

∞∑
n=0

(a2 + b4)π(a2 + b4)nb3(wd)n+2

= bπ4

∞∑
n=0

(a2 + b4)nb3(wd)n+2
−

∞∑
n=0

∞∑
k=0

(bd
4)k+1ak+1

2 (a2 + b4)nb3(wd)n+2.

One gets

(a2 + b4)nb3(wd)n+2 = (a + b)naπb(wd)n+2

and

(bd
4)k+1ak+1

2 (a2 + b4)nb3(wd)n+2 = (bd)k+1ak+1(a + b)naπb(wd)n+2.

Finally, let us observe that the expression
(∑
∞

k=0(bd)k+1ak
)n+2

can be simplified. In effect, since

(
(a2 + b4)d

)n+2
=

∞∑
k=0

(bd
4)n+k+2ak

2,

we have that ∞∑
k=0

(bd)k+1ak


n+2

=

∞∑
k=0

(bd)n+k+2akaπ.

The proof is finished.

IfA is a Banach algebra, then we can define another multiplication inA by a � b = ba. It is trivial that
(A,�) is a Banach algebra. If we apply Theorem 2.3 to this new algebra, we can immediately establish the
following result.
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Theorem 2.4. Let A be a Banach algebra and let a, b ∈ Ad such that aπba = 0 and aπbaπ ∈ Ad. Then a + b is
generalized Drazin invertible if and only if v = (a + b)aad is generalized Drazin invertible. In this case,

(a + b)d = vd +

∞∑
n=0

aπan(bd)n+1
−

∞∑
n=0

vdbaπan(bd)n+1

+

∞∑
n=0

vπvnbaπ
 ∞∑

k=0

ak(bd)n+k+2

 +

∞∑
n=0

(vd)n+2baπ(a + b)nbπ

−

∞∑
n=0

∞∑
k=0

(vd)n+2baπ(a + b)nak+1(bd)k+1.

The condition aπb = 0 is less general than aπba = 0. But if a, b ∈ A satisfy aπb = 0, then the expression
for (a + b)d is simpler than the preceding theorems,

Theorem 2.5. LetA be a Banach algebra and let a, b ∈ Ad be such aπb = 0. If w = aad(a + b) ∈ Ad, then a + b ∈ Ad

and

(a + b)d = wdaad +

∞∑
n=0

(wd)n+2banaπ.

If v = (a + b)aad
∈ A

d, then a + b ∈ Ad and

(a + b)d = vd +

∞∑
n=0

(vd)n+2banaπ.

Proof. Let us consider the matrix representations of a, ad, and b given in (2), (5), and (6) relative to the
idempotent p = aad. We will use the condition aπb = 0. Since

aπb =

[
0 0
0 p

]
p

[
b1 b2
b3 b4

]
p

=

[
0 0
b3 b4

]
p

=

[
0 0
0 0

]
p
,

we obtain b3 = b4 = 0. Hence we have

a + b =

[
a1 + b1 b2

0 a2

]
p

and

w = aad(a + b) =

[
p 0
0 0

]
p

[
a1 + b1 b2

0 a2

]
p

=

[
a1 + b1 b2

0 0

]
p
. (8)

Assume that w ∈ Ad. By Theorem 2.1, it follows that (a + b)d exists and

(a + b)d =

[
(a1 + b1)d u

0 0

]
p

and u =

∞∑
n=0

((a1 + b1)d)n+2b2an
2 . (9)

From (8) we have wdaad = (a1 + b1)d and

(wd)n+2banaπ =

 (
(a1 + b1)d

)n+2
∗

0 0


p

[
b1 b2
0 0

]
p

[
an

1 0
0 an

2

]
p

[
0 0
0 1 − p

]
p

=

 0
(
(a1 + b1)d

)n+2
b2an

2
0 0


p

=
(
(a1 + b1)d

)n+2
b2an

2 .
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Hence the first part of the theorem follows. To prove the second part, observe that

v = (a + b)aad =

[
a1 + b1 b2

0 a2

]
p

[
p 0
0 0

]
p

=

[
a1 + b1 0

0 0

]
p

= a1 + b1

and (vd)n+2banaπ = ((a1 + b1)d)n+2b2an
2 . Now, the second part of the theorem can be proved by using (9).

As we have commented before, we can obtain a paired result by considering the Banach algebraAwith
the product a � b = ba. The key hypothesis of this new result will be baπ = 0.

Theorem 2.6. LetA be a Banach algebra and let a, b ∈ Ad be such baπ = 0. If v = (a + b)aad
∈ A

d, then a + b ∈ Ad

and

(a + b)d = aadvd +

∞∑
n=0

aπanb(vd)n+2.

If w = (a + b)aad
∈ A

d, then a + b ∈ Ad and

(a + b)d = wd +

∞∑
n=0

aπanb(wd)n+2.
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