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Abstract. In this paper we derive a recurrence formula for the q-beta integral using the q-Chu-Vandermonde
formula and show some special cases and applications.

Throughout this paper we suppose |q| < 1. The q-shifted factorial are defined by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1 − aqk), n ≥ 1, (1)

(a; q)∞ = lim
n→∞

n−1∏
k=0

(1 − aqk) =

∞∏
k=0

(1 − aqk). (2)

Clearly,

(a; q)n =
(a; q)∞

(aqn; q)∞
. (3)

We also adopt the following compact notation for multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞
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The Generalized hypergeometric series rΦs are defined by (see [16, p. 347 et seq.], or [5, 8, 15])

rΦs

(a1, a2, . . . , ar;
b1, . . . , bs;

q, z
)

=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar; q)n

(q, b1; q)n(b2; q)n · · · (bs; q)n

[
(−1)nq(n

2)
]1+s−r

zn. (4)

Letting r = s + 1 in (4), we have

s+1Φs

(a1, a2, · · · , as+1;
b1, b2, · · · , bs;

q, x
)

=

∞∑
n=0

(a1, a2, · · · , as+1; q)n

(q, b1, b2, · · · , bs; q)n
xn. (5)

It is not difficult, we get the following identity from (1) and (3).

(aq−n; q)n = (q/a; q)n(−a/q)nq−(
n
2). (6)

Jackson below defined the q-integral from 0 to b and from a to b (see [8], or [9])∫ b

0
f (t)dqt = b(1 − q)

∞∑
n=0

f (bqn)qn, (7)

and ∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt −

∫ a

0
f (t)dqt. (8)

He also defined the q-integral on (0,∞)∫
∞

0
f (t)dqt = (1 − q)

∞∑
n=−∞

f (qn)qn, (9)

and the bilateral q-integral∫
∞

−∞

f (t)dqt = (1 − q)
∞∑

n=−∞

[ f (qn) + f (−qn)]qn, (10)

provided the sums converge absolutely.
The q-beta integral plays an important role in the basic hypergeometric series. Askey obtained an

elegant q-beta integral formula (see [4]):∫
∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

dqω =
2(1 − q)(q2; q2)2

∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞
(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

. (11)

provided that |q| < 1, |ab/deq| < 1 and there are no zero factors in the denominator of the integrals.
Andrews and Askey gave another q-beta integral formula for q-integral from c to d in series of q-Gamma

functions Γq(x) (see [3]). Al-Salam and Verma gave more general q-beta integral formula that can be written
as a well-poised 8Φ7 (see [2]). Wang researched the Askey’s q-beta integral formula (see [18–20]). In [20]
Wang extended Askey’s q-beta integral formula (11) as follows:∫

∞

−∞

(aω, bω; q)∞(sω; q)n(tω; q)m

(−dω, eω; q)∞
dqω

= 2(1 − q)nqm2+mn+n2 tmsn(q2; q2)2
∞(de, q/de, a/eqm+n,−a/dqm+n, b/e,−b/d; q)∞

am+n(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deqm+n+1; q)∞

×

n∑
k=0

(q−m, a/sqn,−ab/deqm+n+1; q)kqk(1−m)

(q, a/eqm+n,−a/dqm+n; q)k
3Φ2

(
q−n, a/tqm+n−k,−ab/deqm+n−k+1;

a/eqm+n−k,−a/dqm+n−k;
q, q

)
. (12)
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provided that |q| < 1, |ab/deq| < 1 and 0 ≤ n + m < log |ab/deq|
log |q|

, and there are no zero factors in the denominator
of the integrals.

Recently, Srivastava [17] gave some generalizations and basic (or q-) extensions of the Bernoulli, Euler
and Genocchi polynomials to deal with the method of q-analysis. More q-series and q-analysis and related
to the topics see [1, 6, 7, 11–13].

In the present paper we obtain a recurrence formula for the q-beta integral. Some special cases and
interesting identities of 3Φ2 be also shown. In particular, we obtain the terminating Sears’ transformation
formula and the evaluation of q-integral

∫
∞

−∞

(aω,bω;q)∞
(−dω,eω;q)∞

ωndqω.
Below we state and prove our main result by using the q-Chu-Vandermonde formula.

Theorem 1. For m and ni(i = 1, 2, . . . ,m + 1) are the nonnegative integers, |q| < 1, |ab/deq| < 1 and 0 ≤ n1 + n2 +

· · · + nm+1 <
log |ab/deq|

log |q| and there are no zero factors in the denominator of the integrals there are no zero factors in the
denominator of the integrals, we have∫

∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

m+1∏
i=1

Pni (ω, di; q)dqω

=
(edm+1; q)nm+1

enm+1

nm+1∑
k=0

(q−nm+1 ; q)kqk

(q, edm+1; q)k

∫
∞

−∞

(aω, bω; q)∞
(−dω, eωqk; q)∞

m∏
i=1

Pni (ω, di; q)dqω.

(13)

where

P0(a, b; q) = 1, Pn(a, b; q) = (a − b)(a − bq) · · · (a − bqn−1), n ≥ 1.

Proof. First we recall the q-Chu-Vandermonde convolution formula (see [8, p. 14, Eq. (1.5.3)])

2Φ1

(
q−n, a;

c;
q, q

)
=

n∑
k=0

(q−n, a; q)k

(q, c; q)k
qk =

an(c/a; q)n

(c; q)n
. (14)

By (3), q-Chu-Vandermonde convolution formula (14) can be written as
n∑

k=0

(q−n; q)kqk

(q, c; q)k

1
(aqk; q)∞

=
an

(c; q)n
·

(c/a; q)n

(a; q)∞
. (15)

Let a 7−→ aω in (15) and multiply the factor

(bω, eω; q)∞
(−dω; q)∞

m∏
i=1

Pni (ω, di; q)

on both sides of (15), then we obtain

n∑
k=0

(q−n; q)kqk

(q, c; q)k
·

(bω, eω; q)∞
(−dω, aqkω; q)∞

m∏
i=1

Pni (ω, di; q)

=
an

(c; q)n
·

(bω, eω; q)∞
(−dω, aω; q)∞

Pn(ω, c/a; q)
m∏

i=1

Pni (ω, di; q). (16)

Now taking the q-integral on both sides of (16) with respect to the variable ω, we get

n∑
k=0

(q−n; q)kqk

(q, c; q)k

∫
∞

−∞

(bω, eω; q)∞
(−dω, aqkω; q)∞

m∏
i=1

Pni (ω, di; q)dqω

=
an

(c; q)n

∫
∞

−∞

(bω, eω; q)∞
(−dω, aω; q)∞

Pn(ω, c/a; q)
m∏

i=1

Pni (ω, di; q)dqω. (17)
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Setting n = nm+1, c = adm+1 in (17), we have

nm+1∑
k=0

(q−nm+1 ; q)kqk

(q, adm+1; q)k

∫
∞

−∞

(bω, eω; q)∞
(−dω, aωqk; q)∞

m∏
i=1

Pni (ω, di; q)dqω

=
anm+1

(adm+1; q)nm+1

∫
∞

−∞

(bω, eω; q)∞
(−dω, aω; q)∞

m+1∏
i=1

Pni (ω, di; q)dqω. (18)

Interchanging a and e in (18), we obtain (13) immediately. This proof is complete.

Remark 2. We definte an empty product
∏m

i=1 = 1 for m = 0 and m = −1. We also say that n0 = 0 when m = −1.
Therefore the equation (13) is true when m = −1.

It follows we give some special cases and applications of Theorem 1.

Theorem 3. For n1 is the nonnegative, |q| < 1, |ab/deq| < 1, and 0 ≤ n1 <
log |ab/deq|

log |q| and there are no zero factors in
the denominator of the integrals there are no zero factors in the denominator of the integrals, we have∫

∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

Pn1 (ω, d1; q)dqω

=
2(1 − q)(d1e; q)n1 (q2; q2)2

∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞
en1 (q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

3Φ2

(
q−n1 , qe/a, qe/b;
d1e,−q2de/ab;

q, q
)
.

(19)

Proof. Letting m = 0 in (13) and e = eqk in (11) and noting that (6), we obtain (19) immediately.

Corollary 4. For n is the nonnegative integers, |q| < 1, |ab/deq| < 1, and 0 ≤ n < log |ab/deq|
log |q| , we have∫

∞

−∞

(aω, bω; q)∞(sω; q)n

(−dω, eω; q)∞
dqω

=
2(1 − q)(s/e; q)n(q2; q2)2

∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞
(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

3Φ2

(
q−n, qe/a, qe/b;

e/sqn−1,−q2de/ab;
q, q

)
.

(20)

Proof. Setting n1 = n in (19) and using the relation

Pn(ω, d1; q) = (−d1)nq(n
2)(ω/d1qn−1; q)n, (21)

and

(−1)nq(n
2) (e/sqn−1; q)n

(e/s)n = (s/e; q)n (22)

we easily get (20).

Remark 5. The formula (20) of is just an analogue of Wang’s result [20, p. 656, Corollary 3.1]:∫
∞

−∞

(aω, bω; q)∞(sω; q)n

(−dω, eω; q)∞
dqω

=
2snqn2

(1 − q)(q2; q2)2
∞(de, q/de, a/eqn,−a/dqn, b/e,−b/d; q)∞

an(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deqn+1; q)∞
3Φ2

(
q−n, a/sqn,−ab/deqn+1;

a/eqn,−a/dqn;
q, q

)
.

(23)
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Comparing (20) and (23) and noting

(aq−n; q)n =
(aq−n; q)∞

(a; q)∞
, (24)

we get directly the following transformation formula for 3Φ2:

Corollary 6. For n is the nonnegative integers, |q| < 1, |ab/deq| < 1, and 0 ≤ n < log |ab/deq|
log |q| , we have

3Φ2

(
q−n, qe/a, qe/b;

e/sqn−1,−q2de/ab;
q, q

)
=

snqn2
(a/eqn,−a/dqn; q)n

an(s/e,−ab/deqn+1; q)n
3Φ2

(
q−n, a/sqn,−ab/deqn+1;

a/eqn,−a/dqn;
q, q

)
. (25)

Corollary 7 (The terminating Sears’ 3Φ2 transformation formula).

3Φ2

(
q−n, a1, a2;

b1, b2;
q, q

)
= (a1a2/b1)n (b1b2/a1a2; q)n

(b2; q)n
3Φ2

(
q−n, b1/a1, b1/a2;

b1, b1b2/a1a2;
q, q

)
. (26)

Proof. Letting e←→ −d in (19), we have

3Φ2

(
q−n1 , qe/a, qe/b;
d1e,−deq2/ab;

q, q
)

= (−e/d)n1
(−d1d; q)n1

(d1e; q)n1

3Φ2

(
q−n1 ,−dq/a,−dq/b;
−d1d,−q2de/ab;

q, q
)
. (27)

Setting eq/a = a1, eq/b = a2, d1e = b2,−deq2/ab = b1,n1 = n in (27), we obtain (26).

Remark 8. The formula (26) can be found in [10], which is used there to prove Sears’ 4Φ3 transformation formula in
[14].

Letting m = 1 in (13) and applying the (3), (6) and (19), we obtain

Theorem 9. For n1 and n2 are the nonnegative integers, |q| < 1, |ab/deq| < 1, and 0 ≤ n1 + n2 <
log |ab/deq|

log |q| and there
are no zero factors in the denominator of the integrals there are no zero factors in the denominator of the integrals, we
have ∫

∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

Pn1 (ω, d1; q)Pn2 (ω, d2; q)dqω

=
2(1 − q)(d2e; q)n2 (q2; q2)2

∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞
en1+n2 (q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

×

n2∑
k=0

(q−n2 , qe/a, qe/b; q)k(d1eqk; q)n1 qk(1−n1)

(q, d2e,−deq2/ab; q)k
3Φ2

(
q−n1 , eqk+1/a, eqk+1/b;

d1eqk,−deqk+2/ab;
q, q

)
. (28)

Corollary 10. For n,N are any nonnegative integers, |q| < 1, |ab/deq| < 1, and 0 ≤ n + N < log |ab/deq|
log |q| , we have

N∑
k=0

(q−N, qe/a, qe/b; q)kqk(1−n)

(q, d1e,−deq2/ab; q)k
3Φ2

(
q−n, eqk+1/a, eqk+1/b;

d1eqk,−deqk+2/ab;
q, q

)
= 3Φ2

(
q−(n+N), qe/a, qe/b;

d1e,−deq2/ab;
q, q

)
. (29)

Proof. Letting n1 = n, n2 = N, d2 = d1qn in (28), we have∫
∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

Pn(ω, d1; q)PN(ω, d1qn; q)dqω

=
2(1 − q)(d1eqn; q)N(q2; q2)2

∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞
en+N(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

×

N∑
k=0

(q−N, qe/a, qe/b; q)k(d1eqk; q)nqk(1−n)

(q, d1eqn,−deq2/ab; q)k
3Φ2

(
q−n, eqk+1/a, eqk+1/b;

d1eqk,−deqk+2/ab;
q, q

)
. (30)
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On the other hand, from Pn(a, b; q) = (a − b)(a − bq) · · · (a − bqn−1) we see easily that

Pn(a, b; q)PN(a, bqn; q) = Pn+N(a, b; q),

and noting that (19), we find that∫
∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

Pn(ω, d1; q)PN(ω, d1qn; q)dqω =

∫
∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

Pn+N(ω, d1; q)dqω

=
2(1 − q)(d1e; q)n+N(q2; q2)2

∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞
en+N(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

3Φ2

(
q−(n+N), qe/a, qe/b;

d1e,−q2de/ab;
q, q

)
.

(31)

Combining (31) and (30), and using (aqn; q)k =
(a;q)k(aqk ;q)n

(a;q)n
,we obtain (29) immediately.

Corollary 11. For n,N are any nonnegative integers, |q| < 1, |ab/deq| < 1, and 0 ≤ n + N < log |ab/deq|
log |q| , we have∫

∞

−∞

(aω, bω; q)∞(sω; q)n(tω; q)N

(−dω, eω; q)∞
dqω

=
2(−s)nq(n

2)(t/e; q)N(1 − q)(q2; q2)2
∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞

en(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

×

N∑
k=0

(q−N, qe/a, qe/b; q)k(eqk−n+1/s; q)nqk(1−n)

(q, e/tqN−1,−deq2/ab; q)k
3Φ2

(
q−n, eqk+1/a, eqk+1/b;

eqk−n+1/s,−deqk+2/ab;
q, q

)
. (32)

Proof. Letting n1 = n,n2 = N in (28). Using (22), we obtain (32).

Remark 12. The is just an analogue to Wang’s main result [20, p. 653, Theorem 1.1].

Theorem 13. For n, p are any nonnegative integers, |q| < 1, |ab/deq| < 1, and 0 ≤ n + p < log |ab/deq|
log |q| and there are no

zero factors in the denominator of the integrals there are no zero factors in the denominator of the integrals, we have∫
∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

ωn+pdqω =
1
en

n∑
k=0

(q−n; q)kqk

(q; q)k

∫
∞

−∞

(aω, bω; q)∞
(−dω, eωqk; q)∞

ωpdqω. (33)

Proof. Putting di = 0 for i = 1, 2, . . . ,m + 1, we have
∏m+1

i=1 Pni (ω, di; q) = ωn1+···+nm+nm+1 and
∏m

i=1 Pni (ω, di; q) =
ωn1+n2+···+nm , setting n1 + n2 + · · · + nm = p, nm+1 = n, it follows (33).

Below we deduce an interesting q-integral formula from the above recurrence formula.

Corollary 14. For n is any nonnegative integers, |q| < 1, |ab/deq| < 1, and 0 ≤ n < log |ab/deq|
log |q| and there are no zero

factors in the denominator of the integrals there are no zero factors in the denominator of the integrals, we have∫
∞

−∞

(aω, bω; q)∞
(−dω, eω; q)∞

ωndqω

=
2(1 − q)(q2; q2)2

∞(de, q/de, a/e,−a/d, b/e,−b/d; q)∞
en(q; q)∞(d2, e2, q2/d2, q2/e2; q2)∞(−ab/deq; q)∞

3Φ2

(
q−n, qe/a, qe/b;

0,−deq2/ab;
q, q

)
.

(34)

Proof. Setting p = 0 in (33) and then letting e 7−→ eqk) in (11), and using the formulas

(a2; q2)n = (a; q)n(−a; q)n and (a; q)−n =
(−q/a)nq

(
n
2

)
(q/a; q)n

,

via some simple computation, we get (34).

Remark 15. If taking n = 0 in (34), we directly obtain Askey’s formula (11), i.e., our formula (34) is another
extension of Askey’s formula (11).
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