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Approximation Fixed Theorems for α-Partial Weakly Zamfirescu
Mappings with Application to Homotopy Invariance
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Abstract. In this paper, we introduce the concept of α-partial weakly Zamfirescu mappings and give
some approximate fixed point results for this mapping in α-complete metric spaces. We also give some
approximate fixed point results in α-complete metric space endowed with an arbitrary binary relation and
approximate fixed point results in α-complete metric space endowed with graph. As application, we give
homotopy results for α-partial weakly Zamfirescu mapping.

1. Introduction and Preliminaries

Fixed point theory is one of the outstanding subfields of nonlinear functional analysis. It has been used
in the research areas of mathematics and nonlinear sciences. Many authors have some detailed discussions
and applications of a fixed point theorems (see example, [1], [2], [3], [7], [17], [20], [16], [18], and references
there in). In 2012, Samet et al. [15] introduced the concepts of α-ψ-contraction mappings and α-admissible
mappings and established various fixed point theorems for such mappings in complete metric spaces.

Definition 1.1 ([15]). Let T be a self mapping on a nonempty set X and α : X × X→ [0,∞) be a mapping. We say
that T is α-adminssible if the following condition holds:

x, y ∈ X with α(x, y) ≥ 1 =⇒ α(Tx,Ty) ≥ 1.

By using this concept, several authors proved fixed point results (see in [8, 10, 11] and references therein).
Afterward, Sintunavarat [19] (see also [12]) introduced the useful concept of transitivity for mappings as
follows:

Definition 1.2 ([12, 19]). Let X be a nonempty set. A mapping α : X × X → [0,∞) is said to be transitive if the
following condition holds:

x, y, z ∈ X with α(x, y) ≥ 1 and α(y, z) ≥ 1 =⇒ α(x, z) ≥ 1.
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They also proved fixed point results for new generalized contraction mapping by using this concept and
established generalized Ulam-Hyers stability, well-posedness, and limit shadowing of fixed point problems
for such mapping in metric spaces. In 2014, Hussain et al. [8] introduced concepts of α-η-complete metric
space and α-η-continuous mapping and establish fixed point results for modified α-η-ψ-rational contraction
mappings in α-η-complete metric spaces. By using these idea, we give the following concepts:

Definition 1.3 ([8]). Let (X, d) be a metric space and α : X × X → [0,∞) be a mapping. The metric space X is said
to be α-complete if and only if every Cauchy sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈N, converges in X.

Remark 1.4. If X is complete metric space, then X is also α-complete metric space. But the converse is not true in
general case.

Now we introduce the concept of α-continuous for (self and non-self) mapping.

Definition 1.5. Let (X, d) be a metric space, α : X × X → [0,∞) be a mapping and A be a subset of X. We say that
T : A→ X is an α-continuous mapping on A if for each sequence {xn} in A, the following condition holds:

xn → x as n→∞ for some x ∈ A and α(xn, xn+1) ≥ 1 for all n ∈N =⇒ Txn → Tx as n→∞.

If A = X, then T is called α-continuous mapping on X (due to Hussain et al. [8]).

Remark 1.6. If T is a continuous mapping, then T is an α-continuous mapping, where α : X × X → [0,∞) is an
arbitrary mappings.

Example 1.7. Let X = (0,∞) and d : X × X → R defined by d(x, y) = |x − y| for all x, y ∈ X. Define mappings
α : X × X→ [0,∞) and T : X→ X by

α(x, y) =

1, x, y ∈ [1, 6],
0, otherwise

and

Tx =

 x
2 , x ∈ [1, 6],
x2 + 3x + 5, x ∈ (0, 1) ∪ (6,∞).

It is easy to see that T is not continuous at x = 6. So, T is not continuous on X, but T is α-continuous on X. Indeed,
let {xn} be a sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈N. For n ∈N, we have xn ∈ [1, 6] and then Txn = xn

2
for all n ∈ N. If xn → x as n → ∞ for some x ∈ X, we have Txn = xn

2 →
x
2 = Tx as n → ∞. Therefore, T is

α-continuous on X.

Next, we give some detail of approximate fixed point property and some useful lemma.

Definition 1.8. Let (X, d) be a metric space. For a give ε > 0, a point x ∈ X is said to be an ε-fixed points of
T : X→ X if d(x,Tx) < ε. The set of all ε-fixed points of T is denoted by Fε(T), that is,

Fε(T) := {x ∈ X : d(x,Tx) < ε}.

Definition 1.9. Let (X, d) be a metric space and T : X → X be a mapping. We say that T has the approximate
fixed point property if for all ε > 0, there exists an ε-fixed point of T, that is,

∀ε > 0, Fε(T) , ∅

or, equivalently,
inf
x∈X

d(x,Tx) = 0.
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Definition 1.10 ([6]). Let (X, d) be a metric space and T : X→ X be a mapping. A self mapping T on a metric space
(X, d) is said to be asymptotically regular at a point x ∈ X, if

d(Tnx,Tn+1x)→ 0 as n→∞,

where Tnx denotes the n − th iterate of T at x.

Lemma 1.11. Let (X, d) be a metric space and T : X → X be an asymptotically regular at a point z ∈ X, then T has
the approximate fixed point property.

On the other hand, Zamfirescu [21] introduced some generalized contraction mapping in 1972 as follows:

Definition 1.12 ([21]). Let (X, d) be a metric space and T be a selfmap on X. Then T is called Zamfirescu whenever
there exists ξ ∈ [0, 1) with

d(Tx,Ty) ≤ ξmax
{
d(x, y),

1
2

[d(x,Tx) + d(y,Ty)],
1
2

[d(x,Ty) + d(y,Tx)]
}

for all x, y ∈ X.

Afterward, Ariza-Ruiza et al. [4] introduced the notion of weakly Zamfirescu mappings as follows:

Definition 1.13 ([21]). Let (X, d) be a metric space and T be a selfmap on X. Then T is called weakly Zamfirescu
whenever there exists γ : X × X→ [0, 1] with

θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1

for all 0 < a ≤ b, such that,
d(Tx,Ty) ≤ γ(x, y)MT(x, y)

for all x, y ∈ X, where

MT(x, y) = max
{
d(x, y),

1
2

[d(x,Tx) + d(y,Ty)],
1
2

[d(x,Ty) + d(y,Tx)]
}
.

Recently, Miandaragh et. al. [13] introduced the concept of α-weakly Zamfirescu mappings as follows:

Definition 1.14 ([13]). Let (X, d) be a metric space, α : X × X → [0,∞) be a mapping and T be a selfmap on X.
Then T is called α-weakly Zamfirescu whenever there exists γ : X × X→ [0, 1] with

θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1

for all 0 < a ≤ b, such that,
α(x, y)d(Tx,Ty) ≤ γ(x, y)MT(x, y)

for all x, y ∈ X, where

MT(x, y) = max
{
d(x, y),

1
2

[d(x,Tx) + d(y,Ty)],
1
2

[d(x,Ty) + d(y,Tx)]
}
.

They also give an approximate fixed point theorems forα-weakly Zamfirescu mappings in metric spaces.
In this paper, we introduce the concept ofα-partial weakly Zamfirescu mappings and prove approximate

fixed point results for such mappings in metric spaces. We also establish the approximate fixed point results
in metric space endowed with an arbitrary binary relation and approximate fixed point results in metric
space endowed with graph by using our main results. As application, we study the homotopy results for
α-partial weakly Zamfirescu mapping.
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2. Main Results

In this section, we introduce the concept of α-partial weakly Zamfirescu mappings and prove approxi-
mate fixed point results for such mappings in metric spaces. We also give the consequently of our results
to another approximate fixed point results.

2.1. Approximate fixed point for α-partial weakly Zamfirescu mappings

In this subsection, we give the concept of new nonlinear mapping so called α-partial weakly Zamfirescu
mapping which is a generalization of α-weakly Zamfirescu mapping and weakly Zamfirescu mapping. We
also establish the approximate fixed point results for such mappings.

Definition 2.1. Let (X, d) be a metric space, α : X × X → [0,∞) be a mapping and T be a selfmap on X. Then T is
called α-partial weakly Zamfirescu mapping whenever there exists a mapping γ : X × X→ [0, 1] with

θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1 for all 0 < a ≤ b, (1)

and it satisfies the following condition:

for all x, y ∈ X with α(x, y) ≥ 1 =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y), (2)

where MT(x, y) = max
{
d(x, y), 1

2 [d(x,Ty) + d(y,Tx)], 1
2 [d(x,Tx) + d(y,Ty)]

}
.

Now, we establish new approximate fixed point theorem for α-partial weakly Zamfirescu mappings in
metric spaces.

Theorem 2.2. Let (X, d) be a metric space, α : X×X→ [0,∞) be a mapping and T be an α-partial weakly Zamfirescu
selfmap on X. If T is α-admissible and there exists x0 ∈ X such that α(x0,Tx0) ≥ 1, then T has the approximate fixed
point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) T is α-continuous on X,

(ii) (X, d) is α-complete metric space,

(iii) α is transitive.

Proof. Let x0 ∈ X be such that α(x0,Tx0) ≥ 1. Define the sequence {xn} in X by xn = Tnx0 for all n ∈N. Now,
we show that d(xn, xn+1) ≤ γ(xn−1, xn)d(xn−1, xn) for all n ∈N. Since T is α-admissible, it is easy to check that
α(xn, xn+1) ≥ 1 for all n ∈N. From (2), for n ∈N, we get

d(xn, xn+1) ≤ γ(xn−1, xn)MT(xn−1, xn),

where

MT(xn−1, xn) = max
{
d(xn−1, xn),

1
2

[d(xn−1,Txn−1) + d(xn,Txn)],
1
2

[d(xn−1,Txn) + d(xn,Txn−1)]
}

= max
{
d(xn−1, xn),

1
2

[d(xn−1, xn) + d(xn, xn+1)],
1
2

[d(xn−1, xn+1) + d(xn, xn)]
}

= max
{
d(xx−1, xn),

1
2

[d(xn−1, xn) + d(xn, xn+1)],
1
2

d(xn−1, xn+1)
}

= max
{
d(xx−1, xn),

1
2

[d(xn−1, xn) + d(xn, xn+1)]
}
.

If MT(xn−1, xn) = d(xn−1, xn), we get

d(xn, xn+1) ≤ γ(xn−1, xn)d(xn−1, xn).
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If MT(xn−1, xn) = 1
2 [d(xn−1, xn) + d(xn, xn+1)], we get

d(xn, xn+1) ≤ γ(xn−1, xn)
[d(xn−1, xn) + d(xn, xn+1)]

2
,

that is,

d(xn, xn+1) ≤
γ(xn−1, xn)

2 − γ(xn−1, xn)
d(xn−1, xn)

≤ γ(xn−1, xn)d(xn−1, xn). (3)

Therefore d(xn, xn+1) ≤ γ(xn−1, xn)d(xn−1, xn) ≤ d(xn−1, xn) for all n ∈ N. This implies that the sequence
{d(xn, xn+1)} is non-increasing and so it converges to the real number d := infn∈N d(xn−1, xn).

Next, we show that d = 0. On the contrary, we get d > 0. Since 0 < d ≤ d(xn, xn+1) ≤ d(x0, x1) for all
n ∈N, we have γ(xn−1, xn) ≤ θ for all n ∈N, where θ := θ(d, d(x0, x1)). Hence, for all n ∈N, we obtain that

d ≤ d(xn, xn+1)
≤ γ(xn−1, xn)d(xn−1, xn)
≤ θd(xn−1, xn)
≤ θ2d(xn−2, xn−1)

...

≤ θnd(x0, x1).

But this is impossible because d > 0 and 0 ≤ θ < 1. Therefore, we get

lim
n→∞

d(xn, xn+1) = 0. (4)

This implies that T is asymptotically regular at x0 ∈ X. By Lemma 1.11, we can conclude that T has the
approximate fixed point property.

Now, suppose that (X, d) is an α-complete metric space and T is α-continuous on X. We will prove that
{xn} is a Cauchy sequence and that its limit is a fixed point for T. To do this, let us prove that

d(xn+1, xn+k+1) ≤ γ(xn, xn+k)d(xn, xn+k) + 2d(xn, xn+1), for all n, k ∈N. (5)

By transitivity of α, we get
α(xn, xn+k) ≥ 1, for all n, k ∈N.

Since α(xn, xn+k) ≥ 1 for all n, k ∈N, we get

d(xn+1, xn+k+1) = d(Txn,Txn+k)
≤ γ(xn, xn+k)MT(xn, xn+k),

where

MT(xn, xn+k) = max
{
d(xn, xn+k),

1
2

[d(xn,Txn) + d(xn+k,Txn+k)],
1
2

[d(xn,Txn+k) + d(xn+k,Txn)]
}

= max
{
d(xn, xn+k),

1
2

[d(xn, xn+1) + d(xn+k, xn+k+1)],
1
2

[d(xn, xn+k+1) + d(xn+k, xn+1)]
}
.

We consider the following three cases.

Case 1: If MT(xn, xn+k) = d(xn, xn+k), then (5) is obvious.
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Case 2: If MT(xn, xn+k) = 1
2 [d(xn, xn+1) + d(xn+k, xn+k+1)], then

d(xn+1, xn+k+1) ≤
γ(xn, xn+k)

2
[d(xn, xn+1) + d(xn+k, xn+k+1)].

Applying (3),

d(xn+k, xn+k+1) ≤ d(xn, xn+1).

So,

d(xn+1, xn+k+1) ≤ γ(xn, xn+k)d(xn, xn+k) + 2d(xn, xn+1).

Case 3: If MT(xn, xn+k) = 1
2 [d(xn, xn+k+1) + d(xn+k, xn+1)], then

d(xn+1, xn+k+1) ≤
γ(xn, xn+k)

2
[d(xn, xn+k+1) + d(xn+k, xn+1)]

≤
γ(xn, xn+k)

2
[d(xn, xn+1) + d(xn+1, xn+k+1) + d(xn+k, xn+1)].

This implies that,

(
1 −

γ(xn, xn+k)
2

)
d(xn+1, xn+k+1) ≤

γ(xn, xn+k)
2

[d(xn, xn+1) + d(xn+k, xn+1)],

that is,

d(xn+1, xn+k+1) ≤
γ(xn, xn+k)

2 − γ(xn, xn+k)
[d(xn+k, xn+1) + d(xn, xn+1)]

≤ γ(xn, xn+k)[d(xn+k, xn+1) + d(xn, xn+1)]
≤ γ(xn, xn+k)d(xn, xn+k) + 2d(xn, xn+1).

To prove that {xn} is a Cauchy sequence, suppose that ε > 0 and use (4) to obtain N ∈N such that

d(xN, xN+1) <
1
6

(
1 − θ

(ε
2
, ε

))
· ε. (6)

We will prove inductively that d(xN, xN+k) < ε for all k ∈ N. It is obvious for k = 1, and assuming
d(xN, xN+k) < ε, let us see that d(xN, xN+k+1) < ε. Note that, using (5), we have that

d(xN, xN+k+1) ≤ d(xN+1, xN+k+1) + d(xN, xN+1)
≤ γ(xN, xN+k)d(xN, xN+k) + 3d(xN, xN+1). (7)

Thus, if d(xN, xN+k) < ε
2 , it follows from (6) and (7) that

d(xN, xN+k+1) ≤ d(xN, xN+k) + 3d(xn, xN+1)

<
ε
2

+ 3 ·
1
6

(
1 − θ

(ε
2
, ε

))
· ε

< ε. (8)
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In the other hand, if d(xN, xN+k) ≥ ε
2 , applying the induction hypothesis, we have that θ(xN, xN+k) ≤ θ( ε2 , ε).

Then, from (6) and (7), we conclude that

d(xN, xN+k+1) ≤ θ(xN, xN+k)d(xN, xN+k) + 3d(xN, xN+1)

< θ
(ε
2
, ε

)
· ε + 3 ·

1
6

(
1 − θ

(ε
2
, ε

))
· ε

≤ ε. (9)

From (8) and (9), we get {xn} is a Cauchy sequence in X. Since (X, d) is α-complete, we get {xn} is convergent,
say to u ∈ X. By α-continuity of T, we get

u = lim
n→∞

xn+1

= lim
n→∞

Txn

= Tu.

Thus T has a fixed point. This completes the proof.

In the next theorem, we replace the α-continuity condition of the mapping T in Theorem 2.2 by using
the following condition:

Definition 2.3. Let (X, d) be a metric space, α : X × X → [0,∞) be a mapping and A be a subset of X. We say that
A satisfies condition (?) if {xn} is sequence in A such that xn → x as n → ∞ for some x ∈ A and α(xn, xn+1) ≥ 1
for all n ∈N, then α(xn, x) ≥ 1 for all n ∈N.

Theorem 2.4. Let (X, d) be a metric space, α : X×X→ [0,∞) be a mapping and T be an α-partial weakly Zamfirescu
selfmap on X. If T is α-admissible and there exists x0 ∈ X such that α(x0,Tx0) ≥ 1, then T has approximate fixed
point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) X satisfies condition (?),

(ii) (X, d) is α-complete metric space,

(iii) α is transitive.

Proof. Follows from the proof of Theorem 2.2, we can construct the sequence {xn} in X such that xn →

u as n→∞ and α(xn, xn+1) ≥ 1 for all n ∈N. By condition (?), we have α(xn,u) ≥ 1 for all n ∈N.
From α-partial weakly Zamfirescu contractive condition, we get

d(Txn,Tu) ≤ γ(xn,u)MT(xn,u)
≤ MT(xn,u)

for all n ∈N Now, we obtain that

d(u,Tu) = lim
n→∞

d(xn+1,Tu)

= lim
n→∞

d(Txn,Tu)

≤ lim
n→∞

MT(xn,u)

= lim
n→∞

max
{
d(xn,u),

1
2

[d(xn,Txn) + d(u,Tu)],
1
2

[d(xn,Tu) + d(u,Txn)]
}

= lim
n→∞

max
{
d(xn,u),

1
2

[d(xn, xn+1) + d(u,Tu)],
1
2

[d(xn,Tu) + d(u, xn+1)]
}

=
1
2

d(u,Tu).

This implies that d(u,Tu) = 0, that is Tu = u and then T has a fixed point. This completes the proof.
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Corollary 2.5. Let (X, d) be a metric space, α : X × X → [0,∞) be a mapping and T be an α-weakly Zamfirescu
selfmap on X. Suppose that T is α-admissible and there exists x0 ∈ X such that α(x0,Tx0) ≥ 1. Then T has the
approximate fixed point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) T is α-continuous on X (or X satisfies condition (?)),

(ii) (X, d) is an α-complete metric space,

(iii) α is transitive.

Corollary 2.6. Let (X, d) be a metric space, α : X ×X→ [0,∞) be a mapping and T : X→ X satisfies the following
condition:

[d(Tx,Ty) + λ]α(x,y)
≤ γ(x, y)MT(x, y) + λ for all x, y ∈ X, (10)

where λ > 1, MT(x, y) = max
{
d(x, y), 1

2 [d(x,Tx) + d(y,Ty)], 1
2 [d(x,Ty) + d(y,Tx)]

}
and γ : X × X → [0, 1] is

mapping with

θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1 for all 0 < a ≤ b.

Suppose that T is α-admissible and there exists x0 ∈ X such that α(x0,Tx0) ≥ 1, then T has the approximate fixed
point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) T is α-continuous on X (or X satisfies condition (?)),

(ii) (X, d) is α-complete metric space,

(iii) α is transitive.

Corollary 2.7. Let (X, d) be a metric space, α : X ×X→ [0,∞) be a mapping and T : X→ X satisfies the following
condition:

[λ − 1 + α(x, y)]d(Tx,Ty)
≤ λγ(x,y)MT(x,y) for all x, y ∈ X, (11)

where λ > 1, MT(x, y) = max
{
d(x, y), 1

2 [d(x,Tx) + d(y,Ty)], 1
2 [d(x,Ty) + d(y,Tx)]

}
and γ : X × X → [0, 1] is

mapping with

θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1 for all 0 < a ≤ b.

Suppose that T is α-admissible and there exists x0 ∈ X such that α(x0,Tx0) ≥ 1, then T has the approximate fixed
point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) T is α-continuous on X (or X satisfies condition (?)),

(ii) (X, d) is an α-complete metric space,

(iii) α is transitive.

Remark 2.8. We can see thatα-weakly Zamfirescu contractive condition and weakly Zamfirescu contractive condition
are special cases of α-partial weakly Zamfirescu contractive condition. Moreover, concepts of α-completeness and α-
continuity are weaker that concepts of completeness and continuity. Therefore, Theorem 3.3 of Miandaragh et al. [13]
and Proposition 26 and Theorem 28 of Ariza-Ruiza et al. [4] are consequently of Theorem 2.2 and Theorem 2.4.
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2.2. Approximate fixed point theorems in metric spaces endowed with an arbitrary binary relations

In this subsection, we present approximate fixed point theorems in metric spaces endowed with an
arbitrary binary relations. The following notions and definitions are needed.

Let (X, d) be a metric space and R be a binary relation over X. Denote

S := R ∪ R−1.

Clearly,

x, y ∈ X, xSy ⇐⇒ xRy or yRx.

It is easy to see that S is the symmetric relation attached to R.

Definition 2.9. Let T be a self mapping on a nonempty set X and R be a binary relation over X. We say that T is
comparative mapping if

x, y ∈ X, xSy =⇒ (Tx)S(Ty).

Definition 2.10. Let (X, d) be a metric space and R be a binary relation over X. The metric space X is said to be
S-complete if and only if every Cauchy sequence {xn} in X with xnSxn+1 for all n ∈N, converges in X.

Definition 2.11. Let (X, d) be a metric space and R be a binary relation over X. We say that T : X → X is an
S-continuous mapping on (X, d) if for each sequence {xn} in X, we have

xn → x as n→∞ for some x ∈ X and xnSxn+1 for all n ∈N =⇒ Txn → Tx as n→∞.

Definition 2.12. Let (X, d) be a metric space and R be a binary relation over X. The space X has the S-transitive
property if the following condition holds:

x, y, z ∈ X with xSy and ySz =⇒ xSz.

Definition 2.13. Let (X, d) be a metric space and R be a binary relation over X. The mapping T : X→ X is called a
partial weakly Zamfirescu mapping with respect to S if there exists a mapping γ : X × X→ [0, 1] with

θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1 for all 0 < a ≤ b,

and it satisfies the following condition:

for all x, y ∈ X, xSy =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y), (12)

where MT(x, y) = max
{
d(x, y), 1

2 [d(x,Tx) + d(y,Ty)], 1
2 [d(x,Ty) + d(y,Tx)]

}
.

Theorem 2.14. Let (X, d) be a metric space, R be a binary relation over X and T : X → X be a partial weakly
Zamfirescu mapping with respect to S. If T is comparative mapping and there exists x0 ∈ X such that x0STx0, then
T has the approximate fixed point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) T is S-continuous,

(ii) (X, d) is S-complete metric space,

(iii) X has the S-transitive property.
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Proof. Consider a mapping α : X × X→ [0,∞) defined by

α(x, y) =

1, xSy,
0, otherwise.

(13)

From that there exists x0 ∈ X such that x0STx0, we get α(x0,Tx0) = 1. It follows from T is comparative
mapping that T is α-admissible mapping. Since T is a partial weakly Zamfirescu mapping with respect to
S, we have, for all x, y ∈ X, we get

xSy =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y), (14)

and thus

α(x, y) ≥ 1 =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y).

This implies that T is an α-partial weakly Zamfirescu mapping. Now all the hypotheses of Theorem 2.2
are satisfied. So T has the approximate fixed point property. Furthermore, S-continuity of T, the S-
completeness of X and the S-transitivity of X yield the existence of fixed point of T. This completes the
proof.

Definition 2.15. Let (X, d) be a metric space and α : X × X → [0,∞) be a mapping. We say that X satisfies
condition (?S) if {xn} is sequence in X such that xn → x as n→∞ for some x ∈ X and xnSxn+1 for all n ∈N, then
xnSx for all n ∈N.

Theorem 2.16. Let (X, d) be a metric space, R be a binary relation over X and T : X → X be a partial weakly
Zamfirescu mapping with respect to S. If T is comparative mapping and there exists x0 ∈ X such that x0STx0, then
T has the approximate fixed point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) X satisfies condition (?S),

(ii) (X, d) is S-complete metric space,

(iii) X has the S-transitive property.

Proof. The result follows from Theorem 2.4 by considering the mappings α given by (13) and by observing
that condition (?S) implies condition (?).

2.3. Approximate fixed point in metric space endowed with graph
Throughout this section, let (X, d) be a metric space. A set {(x, x) : x ∈ X} is called a diagonal of the

Cartesian product X × X and is denoted by ∆. Consider a graph G such that the set V(G) of its vertices
coincides with X and the set E(G) of its edges contains all loops, i.e., ∆ ⊆ E(G). We assume G has no parallel
edges, so we can identify G with the pair (V(G),E(G)). Moreover, we may treat G as a weighted graph by
assigning to each edge the distance between its vertices.

In this subsection, we give the existence of approximate fixed point theorems on a metric space endowed
with graph. Before presenting our results, we give the following notions and definitions.

Definition 2.17. Let X be a nonempty set endowed with a graph G. We say that T : X→ X preserve edge if

for x, y ∈ X, (x, y) ∈ E(G) =⇒ (Tx,Ty) ∈ E(G).

Definition 2.18. Let (X, d) be a metric space endowed with a graph G. The metric space X is said to be E(G)-complete
if and only if every Cauchy sequence {xn} in X with (xn, xn+1) ∈ E(G) for all n ∈N, converges in X.

Definition 2.19. Let (X, d) be a metric space endowed with a graph G and T : X→ X be a mapping. We say that T
is an E(G)-continuous mapping on (X, d) if for each sequence {xn} in X with
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xn → x as n→∞ for some x ∈ X and (xn, xn+1) ∈ E(G) for all n ∈N =⇒ Txn → Tx as n→∞.

Definition 2.20. Let (X, d) be a metric space endowed with a graph G. The space X has the E(G)-transitive property
if the following condition holds:

x, y, z ∈ X with (x, y) ∈ E(G) and (y, z) ∈ E(G) =⇒ (x, z) ∈ E(G).

Remark 2.21. It is easy to see that if G is a connected graph, then X has a E(G)-transitive property.

Definition 2.22. Let (X, d) be a metric space endowed with a graph G. The mapping T : X → X is called a partial
weakly Zamfirescu mapping with respect to E(G) if there exists a mapping γ : X × X→ [0, 1] with

for all 0 < a ≤ b, θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1,

and it satisfies the following condition:

for all x, y ∈ X (x, y) ∈ E(G) =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y), (15)

where MT(x, y) = max
{
d(x, y), 1

2 [d(x,Tx) + d(y,Ty)], 1
2 [d(x,Ty) + d(y,Tx)]

}
.

Theorem 2.23. Let (X, d) be a metric space endowed with a graph G and T : X→ X be a partial weakly Zamfirescu
mapping with respect to E(G). If T preserve edge and there exists x0 ∈ X such that (x0,Tx0) ∈ E(G), then T has the
approximate fixed point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) T is E(G)-continuous,

(ii) (X, d) is E(G)-complete metric space,

(iii) X has E(G)-transitive property.

Proof. Consider a mapping α : X × X→ [0,∞) defined by

α(x, y) =

1, x, y ∈ E(G),
0, otherwise.

(16)

From that there exists x0 ∈ X such that (x0,Tx0) ∈ E(G), we get α(x0,Tx0) = 1. It follows from T preserve
edge that T is α-admissible mapping. Since T is a partial weakly Zamfirescu mapping with respect to E(G),
we have, for all x, y ∈ X, we obtain that

(x, y) ∈ E(G) =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y) (17)

that is,

α(x, y) ≥ 1 =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y). (18)

This implies that T is a α-partial weakly Zamfirescu selfmap on X. Now all the hypotheses of Theorem
2.2 are satisfied. So T has the approximate fixed point property. Furthermore, E(G)-continuity of T, the
E(G)-completeness of X and E(G)-transitivity of X yield the existence of fixed point of T. This completes
the proof.

Definition 2.24. Let (X, d) be a metric space and α : X × X → [0,∞) be a mapping. We say that X satisfies
condition (?E) if {xn} is sequence in X such that xn → x as n → ∞ for some x ∈ X and (xn, xn+1) ∈ E(G) for all
n ∈N, then (xn, x) ∈ E(G) for all n ∈N.

Theorem 2.25. Let (X, d) be a metric space endowed with a graph G and T : X→ X be a partial weakly Zamfirescu
mapping with respect to E(G). If T is preserve edge and there exists x0 ∈ X such that (x0,Tx0) ∈ E(G), then T has the
approximate fixed point property.

Moreover, T has a fixed point provides that the following conditions hold:
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(i) X satisfies condition (?E),

(ii) (X, d) is E(G)-complete metric space,

(iii) X has E(G)-transitive property.

Proof. The result follows from Theorem 2.4 by considering the mappings α given by (16) and by observing
that condition (?E) implies condition (?).

From Remark 2.21, we get the following result on connected graph.

Corollary 2.26. Let (X, d) be a metric space endowed with a graph G and T : X→ X be a partial weakly Zamfirescu
mapping with respect to E(G). If T is preserve edge and there exists x0 ∈ X such that (x0,Tx0) ∈ E(G), then T has the
approximate fixed point property.

Moreover, T has a fixed point provides that the following conditions hold:

(i) T is E(G)-continuous (or X satisfies condition (?E)),

(ii) (X, d) is E(G)-complete metric space,

(iii) G is connected graph.

3. Homotopy Invariance

In this section, we will study the homotopy results for α-partial weakly Zamfirescu mappings. By using
Theorem 2.2, we obtain the following local results, which will be used in the homotopy result (Theorem
3.2).

Theorem 3.1. Let (X, d) be a metric space, α : X×X→ [0,∞) be a mapping, x0 ∈ X, r > 0 and B(x0, r) is α-complete.
Suppose that the following condition holds:

1. T : B(x0, r)→ X is α-continuous on B(x0, r) (or B(x0, r)satisfies condition (?)),
2. there exists a mapping γ : B(x0, r) × B(x0, r)→ [0, 1] with

for all 0 < a ≤ b, θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1,

and it satisfies the following condition:

for all x, y ∈ B(x0, r) α(x, y) ≥ 1 =⇒ d(Tx,Ty) ≤ γ(x, y)MT(x, y), (19)

where MT(x, y) = max
{
d(x, y), 1

2 [d(x,Tx) + d(y,Ty)], 1
2 [d(x,Ty) + d(y,Tx)]

}
,

3. α has transitive property.

If α(x0, x) ≥ 1 for all x ∈ B(x0, r) and

d(x0,Tx0) <
1
3

min
{ r

2
, r

[
1 − θ

( r
2
, r

)]}
,

then T has a fixed point.

Proof. By using Theorem 2.2 (or Theorem 2.4), it suffices to show that the closed ball B(x0, r) is invariant
under T. Consider any x ∈ B(x0, r), and obtain the relation

d(x0,Tx) ≤ d(x0,Tx0) + d(Tx0,Tx).

Since α(x0, x) ≥ 1 for all x ∈ B(x0, r), we obtain that

d(x0,Tx) ≤ d(x0,Tx0) + γ(x0, x)MT(x0, x),
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where

MT(x0, x) = max
{
d(x0, x),

1
2

[d(x0,Tx0) + d(x,Tx)],
1
2

[d(x0,Tx) + d(x,Tx0)]
}
.

We now consider three cases.

Case 1: If MT(x0, x) = d(x0, x), then we have

d(x0,Tx) ≤ d(x0,Tx0) + γ(x0, x)d(x0, x).

Case 2: If MT(x0, x) = 1
2 [d(x0,Tx0) + d(x,Tx)], then we have

d(x0,Tx) ≤ d(x0,Tx0) +
γ(x0, x)

2
[d(x0,Tx0) + d(x,Tx)]

≤ d(x0,Tx0) +
γ(x0, x)

2
[d(x0,Tx0) + d(x, x0) + d(x0,Tx)],

from which, having in mind that γ(x0, x) ≤ 1,

d(x0,Tx) ≤ 3d(x0,Tx0) + γ(x0, x)d(x0, x).

Case 3: If MT(x0, x) = 1
2 [d(x0,Tx) + d(x,Tx0)], then we obtain that

d(x0,Tx) ≤ d(x0,Tx0) +
γ(x0, x)

2
[d(x0,Tx) + d(x,Tx0)]

≤ d(x0,Tx0) +
γ(x0, x)

2
[d(x0,Tx) + d(x, x0) + d(x0,Tx0)],

form which, having in mind that γ(x0, x) ≤ 1,

d(x0,Tx) ≤ 3d(x0,Tx0) + γ(x0, x)d(x0, x).

Therefore, in any case, we get

d(x0,Tx) ≤ 3d(x0,Tx0) + γ(x0, x)d(x0, x).

To end the proof, obtain that d(x0,Tx) ≤ r through the above inequality by considering two cases. If d(x0, x) ≤
r
2 , then d(x0,Tx) ≤ r. Otherwise, we have r

2 ≤ d(x0, x) ≤ r and hence γ(x0, x) ≤ θ( r
2 , r). Consequently, we get

d(x0,Tx) ≤ r
[
1 − θ

( r
2
, r

)]
+ rθ

( r
2
, r

)
= r.

This completes the proof.

Theorem 3.2. Let (X, d) be a metric space, α : X ×X→ [0,∞) be a mapping, U be a bounded open subset of X such
that U is α-complete, and H : U × [0, 1]→ X satisfying the following properties:

(P1) H(x, λ) , x for all x ∈ ∂U and λ ∈ [0, 1];

(P2) there exists γ : U ×U→ [0, 1] satisfying

θ(a, b) := sup{γ(x, y) : a ≤ d(x, y) ≤ b} < 1 for all 0 < a ≤ b,

such that, for all x, y ∈ U and λ ∈ [0, 1], we have the following condition holds:

α(x, y) ≥ 1 =⇒ d(H(x, λ),H(y, λ)) ≤ γ(x, y)Mλ
H(x, y), (20)

where

Mλ
H(x, y) := max

{
d(x, y),

1
2

[d(x,H(x, λ)) + d(y,H(y, λ))],
1
2

[d(x,H(y, λ)) + d(y,H(x, λ))]
}

;
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(P3) H(x, λ) is continuous in λ, uniformly for x ∈ U, that is, for any ε > 0 there exists δ > 0 such that

d(H(x, t),H(x, s)) ≤ ε

for all x ∈ U and t, s ∈ [0, 1] with |t − s| < δ, where δ is independent of x.

(P4) If x ∈ U such that H(x, λ) = x for some λ ∈ [0, 1], then α(x, y) ≥ 1 for all y ∈ U.

(P5) H(·, λ) : U→ X is α-continuous, where λ ∈ [0, 1].

(P6) U satisfies condition (?)).

(P7) α is transitive.

If H(·, 0) has a fixed point in U, then H(·, λ) also has a fixed point in U for all λ ∈ [0, 1].

Proof. Consider the nonempty set

A = {λ ∈ [0, 1] : H(x, λ) = x for some x ∈ U}.

We just need to prove that A = [0, 1], and for this it suffices to show that A is both closed and open in [0, 1].
We first prove that A is closed in [0, 1]. Suppose that {λn} is a sequence in A converging to λ ∈ [0, 1], and

let us show that λ ∈ A. By definition of A, there exists a sequence {xn} in U with xn = H(xn, λn) for all n ∈N.
We shall prove that {xn} converges to a point x0 ∈ U with H(x0, λ) = x0and thus λ ∈ A.

In the first place, we shall prove that, for all n,m ∈N,

d(xn, xm) ≤ γ(xn, xm)d(xn, xm) +

(
1 +

γ(xn, xm)
2

)
[d(H(xm, λm),H(xm, λ)) + d(H(xn, λn)H(xn, λ))]. (21)

From (P4), we get α(xn, xm) ≥ 1 for all n,m ∈N. To prove (21), observe that, if n,m ∈N, we get

d(xn, xm) = d(H(xn, λn),H(xm, λm))
≤ d(H(xn, λn),H(xn, λ)) + d(H(xn, λ),H(xm, λ)) + d(H(xm, λ),H(xm, λm))
≤ d(H(xn, λn),H(xn, λ)) + γ(xn, xm)Mλ

H(xn, xm) + d(H(xm, λ),H(xm, λm)),

where

Mλ
H(xn, xm) = max

{
d(xn, xm),

1
2

[d(xn,H(xn, λ)) + d(xm,H(xm, λ))],
1
2

[d(xn,H(xm, λ)) + d(xm,H(xn, λ))]
}
.

To continue with the above chain of inequalities, just consider the following three possibilities for Mλ
H(xn, xm).

Case 1: If Mλ
H(xn, xm) = d(xn, xm), then (21) is obvious.

Case 2: If Mλ
H(xn, xm) = 1

2 [d(xn,H(xn, λ)) + d(xm,H(xm, λ))], then we have

d(xn.xm) ≤ d(H(xn, λn),H(xn, λ)) +
γ(xn, xm)

2
[d(xn,H(xn, λ)) + d(xm,H(xm, λ))] + d(H(xm, λ),H(xm, λm))

=

(
1 +

γ(xn, xm)
2

)
[d(H(xm, λm),H(xm, λ)) + d(H(xn, λn),H(xn, λ))].

Case 3: If Mλ
H(xn, xm) = 1

2 [d(xn,H(xm, λ)) + d(xm,H(xn, λ))], then we get

d(xn, xm) ≤ d(H(xn, λn),H(xn, λ)) +
γ(xn.xm)

2
[d(xn,H(xm, λ)) + d(xm,H(xn, λ))] + d(H(xm, λ),H(xm, λm))

≤ d(H(xn, λn),H(xn, λ)) +
γ(xn, xm)

2
[2d(xn, xm) + d(H(xm, λm),H(xm, λ)) + d(H(xn, λn),H(xn, λ))]

+d(H(xm, λ),H(xm, λm))

= γ(xn, xm)d(xn, xm) +

(
1 +

γ(xn, xm)
2

)
[d(H(xm, λm),H(xm, λ)) + d(H(xn, λn),H(xn, λ))].
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Hence, (21) is proved.
Next we prove that {xn} is a Cauchy sequence. Otherwise, there exist a positive constant δ and two

subsequences of {xn}, {xnk } and {xmk } such that d(xxk , xmk ) ≥ δ for all k ∈ N. Now let M := diam U.
Consequently, we have γ(xnk , xmk ) ≤ θ(δ,M) and then (21) leads to

d(xnk , xmk ) ≤ θ(δ,M)d(xnk , xmk ) +

(
1 +

θ(δ,M)
2

)
[d(H(xmk , λmk ),H(xmk , λ)) + d(H(xnk , λnk ),H(xnk , λ))]

and so

δ ≤ d(xnk , xmk ) ≤
2 + θ(δ,M)

2(1 − θ(δ,M))
[d(H(xmk , λmk ),H(xmk , λ)) + d(H(xnk , λnk ),H(xnk , λ))]. (22)

Since, by (P3), d(H(xmk , λmk ),H(xmk , λ)) → 0 as k → ∞, we reach a contradiction from (22). Hence, {xn} is a
Cauchy sequence. Write x0 = lim

n→∞
xn and let us see that x0 ∈ U and also that x0 = H(x0, λ). That x0 = H(x0, λ)

is a consequence of the following relation:

d(xn,H(x0, λ)) ≤ d(xn,H(xn, λ)) + d(H(xn, λ),H(x0, λ))

≤ d(H(xn, λn),H(xn, λ)) + max
{
d(xn, x0),

1
2

[d(x0,H(x0, λ)) + d(xn,H(xn, λ))],

1
2

[d(x0,H(xn, λ)) + d(x0,H(x0, λ))]
}

≤ d(H(xn, λn),H(xn, λ)) + max
{
d(xn, x0),

1
2

[d(x0,H(x0, λ)) + d(xn,H(xn, λ))],

1
2

[d(x0, xn) + d(H(xn, λn),H(xn, λ)) + d(xn,H(x0, λ))]
}
,

and that x0 ∈ U is straightforward from (P1).
We now turn to prove that A is open [0, 1]. Suppose thatλ0 ∈ A and let us show that (λ0−δ, λ0+δ)∩[0, 1] ⊂

A, for some δ > 0. Since λ0 ∈ A, there exists x0 ∈ U with x0 = H(x0, λ0). Consider r > 0 with B(x0, r) ⊂ U,
and use (P3) to obtain δ > 0 such that

d(H(x0, λ0),H(x0, λ)) <
1
3

min
{ r

2
, r

[
1 − θ

( r
2
, r

)]}
for all λ ∈ (λ0 − λ, λ0 + δ) ∩ [0, 1]. This implies that

d(x0,H(x0, λ)) = d(H(x0, λ0),H(x0, λ))

<
1
3

min
{ r

2
, r

[
1 − θ

( r
2
, r

)]}
.

for all λ ∈ (λ0 − λ, λ0 + δ) ∩ [0, 1]. By using Theorem 3.1, we get the mapping H(·, λ) : B(x0, r) → X has a
fixed point. Therefore, for any λ ∈ (λ0 − λ, λ0 + δ) ∩ [0, 1] is also in A. This means that A is a open in [0, 1].

Consequently, we have A is both closed and open in [0, 1] and hence A = [0, 1]. This completes the
proof.
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