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Abstract. We study the geometry of half lightlike submanifolds (M, 1,S(TM),S(TM⊥)) of a semi-Riemannian
manifold (M̃, 1̃) of quasi-constant curvature subject to the following conditions; (1) the curvature vector
field ζ of M̃ is tangent to M, (2) the screen distribution S(TM) of M is either totally geodesic or totally
umbilical in M, and (3) the co-screen distribution S(TM⊥) of M is a conformal Killing distribution.

1. Introduction

In the generalization from the theory of submanifolds in Riemannian to the theory of submanifolds in
semi-Riemannian manifolds, the induced metric on submanifolds may be degenerate(lightlike) therefore
there is a natural existence of lightlike submanifolds and for which the local and global geometry is
completely different than non-degenerate case. In lightlike case, the standard text book definitions do not
make sense and one fails to use the theory of non-degenerate geometry in the usual way. The primary
difference between the lightlike submanifolds and non-degenerate submanifolds is that in the first case,
the normal vector bundle intersects with the tangent bundle. Thus, the study of lightlike submanifolds
becomes more difficult and different from the study of non-degenerate submanifolds. Moreover, the
geometry of lightlike submanifolds is used in mathematical physics, in particular, in general relativity since
lightlike submanifolds produce models of different types of horizons (event horizons, Cauchy’s horizons,
Kruskal’s horizons). The universe can be represented as a four dimensional submanifold embedded
in a (4 + n)-dimensional spacetime manifold. Lightlike hypersurfaces are also studied in the theory of
electromagnetism [6]. Thus, large number of applications but limited information available, motivated us
to do research on this subject matter. Kupeli [11] and Bejancu-Duggal [6] developed the general theory of
degenerate (lightlike) submanifolds. They constructed a transversal vector bundle of lightlike submanifold
and investigated various properties of these manifolds. Moreover, Sahin and Yildirim ([12]) studied both
slant lightlike submanifolds and screen slant lightlike submanifolds of an indefinite Sasakian manifold.
They obtained necessary and sufficient conditions for the existence of a slant lightlike submanifold.

The idea of Riemannian manifold of quasi-constant curvature was introduced by B. Y. Chen and
K. Yano [2] as follows: A Riemannian manifold of quasi-constant curvature is a Riemannian manifold (M̃, 1̃)
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equipped with the curvature tensor R̃ satisfying

1̃(R̃(X,Y)Z,W) = α{1̃(Y,Z)1(X,W) − 1̃(X,Z)1(Y,W)} (1.1)
+ β{1̃(X,W)θ(Y)θ(Z) − 1̃(X,Z)θ(Y)θ(W)

+ 1̃(Y,Z)θ(X)θ(W) − 1̃(Y,W)θ(X)θ(Z)},

where α, β are scalar functions and θ is a 1-form defined by

θ(X) = 1̃(X, ζ), (1.2)

and ζ is a unit vector field on M̃, which called the curvature vector field of M̃. It is well-known that if the
curvature tensor R̃ is of the form (1.1), then M̃ is conformally flat. If β = 0, then M̃ is a space of constant
curvature.

A non-flat Riemannian manifold M̃ of dimension n(> 2) is called a quasi-Einstein manifold [1] if its Ricci
tensor R̃ic satisfies the condition

R̃ic(X,Y) = a 1̃(X,Y) + bφ(X)φ(Y),

where a, b are scalar functions such that b , 0 and φ is a non-vanishing 1-form such that 1̃(X,U) = φ(X) for
any vector field X, where U is a unit vector field. If b = 0, then M̃ is an Einstein manifold. It can be easily seen
that every Riemannian manifold of quasi-constant curvature is a quasi-Einstein manifold. Moreover, A.
Del et al ([3]) gave some geometric properties for generalized quasi-Einstenin manifolds. They contructed
non-trivial examples to prove the existence of a generalized quasi-Einstein manifolds.

The subject of this paper is to study the geometry of half lightlike submanifolds of a semi-Riemannian
manifold (M̃, 1̃) of quasi-constant curvature. We prove two characterization theorems for such a half
lightlike submanifold (M, 1,S(TM),S(TM⊥)) as follows :

Theorem 1.1. Let M be a half lightlike submanifold of a semi-Riemannian manifold (M̃, 1̃) of quasi-constant
curvature. If the curvature vector field ζ of M̃ is tangent to M and S(TM) is totally geodesic in M, then we have the
following results :

(1) If S(TM⊥) is a Killing distribution, then the functionsα and β, defined by (1.1), vanish identically. Furthermore,
M̃, M and the leaf M∗ of S(TM) are flat manifolds.

(2) If S(TM⊥) is a conformal Killing distribution, then the function β vanishes identically. Furthermore, M̃ and
M∗ are space of constant curvatures and M is an Einstein manifolds such that Ric = (r/m) 1, where r is the
induced scalar curvature of M.

Theorem 1.2. Let M be a half lightlike submanifold of a semi-Riemannian manifold M̃ of quasi-constant
curvature. If ζ is tangent to M, S(TM) is totally umbilical in M and S(TM⊥) is a conformal Killing distribution with
a non-constant conformal factor, then the function β vanishes identically. Moreover M̃ and M∗ are space of constant
curvatures and M is a totally umbilical Einstein manifolds such that Ric = (r/m) 1.

2. Half Lightlike Submanifolds

It is well-known that the radical distribution Rad(TM) = TM ∩ TM⊥ of half lightlike submanifolds M
of a semi-Rimannian manifold (M̃, 1̃) of codimension 2 is a subbundle of the tangent bundle TM and the
normal bundle TM⊥, of rank 1. Thus there exist complementary non-degenerate distributions S(TM) and
S(TM⊥) of Rad(TM) in TM and TM⊥ respectively, called the screen and coscreen distribution on M, such that

TM = Rad(TM) ⊕orth S(TM), TM⊥ = Rad(TM) ⊕orth S(TM⊥), (2.1)
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where ⊕orth denotes the orthogonal direct sum. We denote such a half lightlike submanifold by M =
(M, 1,S(TM),S(TM⊥)). Denote by F(M) the algebra of smooth functions on M and by Γ(E) the F(M) module
of smooth sections of any vector bundle E over M. Consider the orthogonal complementary distribution
S(TM)⊥ to S(TM) in TM̃. Certainly TM⊥ is a subbundle of S(TM)⊥. As S(TM⊥) is a non-degenerate
subbundle of S(TM)⊥, the orthogonal complementary distribution S(TM⊥)⊥ of S(TM⊥) in S(TM)⊥ is also a
non-degenerate distribution of rank 2 and satisfies the following orthogonal decomposition

S(TM)⊥ = S(TM⊥) ⊕orth S(TM⊥)⊥.

Clearly Rad(TM) is a vector subbundle of S(TM⊥)⊥. Choose L ∈ Γ(S(TM⊥)) as a unit vector field with
1̃(L,L) = ε = ±1. For any null section ξ of Rad(TM), there exists a uniquely defined null vector field
N ∈ Γ(S(TM⊥)⊥) [5] satisfying

1̃(ξ,N) = 1, 1̃(N,N) = 1̃(N,X) = 1̃(N,L) = 0, ∀X ∈ Γ(S(TM)). (2.2)

Denote by ltr(TM) the subbundle of S(TM⊥)⊥ locally spanned by N. Then we show that S(TM⊥)⊥ =
Rad(TM)⊕ ltr(TM). Let tr(TM) = S(TM⊥)⊕orth ltr(TM). We call N, ltr(TM) and tr(TM) the lightlike transversal
vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen
distribution S(TM) respectively. Then the tangent bundle TM̃ of M̃ is decomposed as follow :

TM̃ = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)} ⊕orth S(TM) (2.3)
= {Rad(TM) ⊕ ltr(TM)} ⊕orth S(TM) ⊕orth S(TM⊥).

Let ∇̃ be the Levi-Civita connection of M̃ and P the projection morphism of TM on S(TM) with respect
to the decomposition (2.1). Then the local Gauss and Weingarten formulas of M and S(TM) are given
respectively by

∇̃XY = ∇XY + B(X,Y)N + D(X,Y)L, (2.4)

∇̃XN = −AN X + τ(X)N + ρ(X)L, (2.5)

∇̃XL = −AL X + φ(X)N, (2.6)
∇XPY = ∇∗XPY + C(X,PY)ξ, (2.7)
∇Xξ = −A∗ξX − τ(X)ξ, ∀X, Y ∈ Γ(TM), (2.8)

where ∇ and ∇∗ are induced connections on TM and S(TM) respectively, B and D are called the local
second fundamental forms of M, C is called the local second fundamental form on S(TM). AN , A∗ξ and AL are

linear operators on TM and τ, ρ and φ are 1-forms on TM. Since ∇̃ is torsion-free, the induced connection
∇ of M is also torsion-free and both B and D are symmetric. From the facts B(X,Y) = 1̃(∇̃XY, ξ) and
D(X,Y) = ε1̃(∇̃XY, L), we know that B and D are independent of the choice of a screen distribution and

B(X, ξ) = 0, D(X, ξ) = −εφ(X), ∀X ∈ Γ(TM). (2.9)

The induced connection ∇ on M is not metric and satisfies

(∇X1)(Y,Z) = B(X,Y) η(Z) + B(X,Z) η(Y), (2.10)

for all X, Y, Z ∈ Γ(TM), where η is a 1-form on TM such that

η(X) = 1̃(X,N), ∀X ∈ Γ(TM). (2.11)

But the connection ∇∗ on M∗ is metric. The above three local second fundamental forms of M and M∗ are
related to their shape operators by

B(X,Y) = 1(A∗ξX,Y), 1̃(A∗ξX,N) = 0, (2.12)

C(X,PY) = 1(AN X,PY), 1̃(AN X,N) = 0, (2.13)
εD(X,Y) = 1(AL X,Y) − φ(X)η(Y), 1̃(AL X,N) = ερ(X), (2.14)
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for all X, Y ∈ Γ(TM). By (2.12) and (2.13), we show that A∗ξ and AN are Γ(S(TM))-valued shape operators
related to B and C respectively and A∗ξ is self-adjoint on TM and

A∗ξξ = 0. (2.15)

Denote by R̃, R and R∗ the curvature tensors of the Levi-Civita connection ∇̃on M̃, the induced connection
∇ on M and the induced connection ∇∗ on S(TM) respectively. Using the Gauss -Weingarten equations
(2.4)∼(2.8) for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM) : For all X, Y, Z, W ∈
Γ(TM),

1̃(R̃(X,Y)Z, PW) = 1(R(X,Y)Z, PW) (2.16)
+ B(X,Z)C(Y,PW) − B(Y,Z)C(X,PW)
+ ε{D(X,Z)D(Y,PW) −D(Y,Z)D(X,PW)},

1̃(R̃(X,Y)Z, ξ) = (∇XB)(Y,Z) − (∇YB)(X,Z) (2.17)
+ B(Y,Z)τ(X) − B(X,Z)τ(Y)
+ D(Y,Z)φ(X) −D(X,Z)φ(Y),

1̃(R̃(X,Y)Z, N) = 1̃(R(X,Y)Z, N) (2.18)
+ ε{D(X,Z)ρ(Y) −D(Y,Z)ρ(X)},

ε 1̃(R̃(X,Y)Z, L) = (∇XD)(Y,Z) − (∇YD)(X,Z) (2.19)
+ρ(X)B(Y,Z) − ρ(Y)B(X,Z),

1̃(R̃(X,Y)ξ, N) = 1(A∗ξX, AN Y) − 1(A∗ξY, AN X) (2.20)
− 2dτ(X,Y) + ρ(X)φ(Y) − ρ(Y)φ(X),

1̃(R(X,Y)PZ, PW) = 1(R∗(X,Y)PZ, PW) (2.21)
+ C(X,PZ)B(Y,PW) − C(Y,PZ)B(X,PW),

1(R(X,Y)PZ, N) = (∇XC)(Y,PZ) − (∇YC)(X,PZ) (2.22)
+ C(X,PZ)τ(Y) − C(Y,PZ)τ(X).

The Ricci curvature tensor, denoted by R̃ic, of M̃ is defined by

R̃ic(X,Y) = trace{Z→ R̃(Z,X)Y},

for any X, Y ∈ Γ(TM̃). Let dim M̃ = m + 3. Locally, R̃ic is given by

R̃ic(X,Y) =

m+3∑
i=1

εi 1̃(R̃(Ei,X)Y, Ei), (2.23)

where {E1, . . . , Em+3} is an orthonormal frame field of TM̃ and εi (= ±1) denotes the causal character of
respective vector field Ei. If dim(M̃) > 2 and

R̃ic = κ̃1̃, κ̃ is a constant, (2.24)

then M̃ is an Einstein manifold. The scalar curvature r̃ is defined by

r̃ =

m+3∑
i=1

εi R̃ic(Ei, Ei). (2.25)

Putting (2.24) in (2.25) implies that M̃ is Einstein if and only if

R̃ic =
r̃

m + 3
1̃.



D. H. Jin, J. W. Lee / Filomat 30:7 (2016), 1737–1745 1741

A vector field X on M̃ is said to be a conformal Killing vector field [10] if L̃X 1̃ = −2δ 1̃ for any smooth
function δ, where L̃X denotes the Lie derivative with respect to X, that is,

(L̃X 1̃)(Y,Z) = X(1̃(Y,Z)) − 1̃([X,Y],Z) − 1̃(Y, [X,Z]), ∀X,Y,Z ∈ Γ(TM̃).

In particular, if δ = 0, then X is called a Killing vector field [9]. A distribution G on M̃ is called a conformal
Killing (resp. Killing) distribution on M̃ if each vector field belonging to G is a conformal Killing (resp.
Killing) vector field on M̃.

Theorem 1.1 [9, 10]. Let M be a half lightlike submanifold of a semi-Riemannian manifold (M̃, 1̃). If the coscreen
distribution S(TM⊥) is a conformal Killing (resp. Killing) distribution, then there exists a smooth function δ such
that

D(X,Y) = εδ 1(X,Y), {resp. D(X,Y) = 0, } ∀X, Y ∈ Γ(TM). (2.26)

Proof. By straightforward calculations and use (2.6) and (2.14), we have

(L̃L 1̃)(X,Y) = 1̃(∇̃XL,Y) + 1̃(X, ∇̃YL),

1̃(∇̃XL,Y) = −1(ALX,Y) + φ(X)η(Y) = −εD(X,Y),

for any X, Y ∈ Γ(TM). From (L̃L 1̃)(X,Y) = − 2εD(X,Y) we deduce our assertion.

3. Proof of Theorems

Let R(0, 2) denote the induced Ricci type tensor of type (0, 2) on M given by

R(0, 2)(X,Y) = trace{Z→ R(Z,X)Y} , ∀X, Y ∈ Γ(TM). (3.1)

Consider an induced quasi-orthonormal frame field {ξ; Wa} on M such that Rad(TM) = Span{ξ} and S(TM) =

Span{Wa}, and let E = {ξ,Wa,N,L} be the corresponding frame field on M̃. By using (2.23) and (3.1), for all
X, Y ∈ Γ(TM), we get

R̃ic(X,Y) =

m∑
a=1

εa 1̃(R̃(Wa,X)Y, Wa) + 1̃(R̃(ξ,X)Y, N) (3.2)

+ ε 1̃(R̃(L,X)Y, L) + 1̃(R̃(N,X)Y, ξ),

R(0, 2)(X,Y) =

m∑
a=1

εa 1(R(Wa,X)Y, Wa) + 1̃(R(ξ,X)Y, N). (3.3)

Substituting (2.16) and (2.18) in (3.2) and using (2.12)∼(2.14) and (3.3), we obtain

R(0, 2)(X,Y) = R̃ic(X,Y) + B(X,Y)trAN + D(X,Y)trAL (3.4)
− 1(AN X, A∗ξY) − ε 1(AL X, AL Y) + ρ(X)φ(Y)

− 1̃(R̃(ξ,Y)X, N) − ε 1̃(R̃(L,Y)X, L),

for any X, Y ∈ Γ(TM) [9, 10]. This shows that R(0, 2) is not symmetric. A tensor field R(0, 2) of M, given by
(3.1), is called its induced Ricci tensor [8–10] if it is symmetric. From now and in the sequel, a symmetric
R(0, 2) tensor will be denoted by Ric.

Using (2.20), (3.4) and the first Bianchi’s identity, we obtain

R(0, 2)(X,Y) − R(0, 2)(Y,X) = 2dτ(X,Y).
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Theorem 3.1 [7]. Let M be a half lightlike submanifold of a semi-Riemannian manifold (M̃, 1̃). Then the tensor
field R(0, 2) is an induced symmetric Ricci tensor, Ric, if and only if the 1-form τ is closed, i.e., dτ = 0, on any coordinate
neighborhoodU ⊂M.

For the rest of this paper, let M be a half lightlike submanifold of a semi-Riemannian manifold M̃ of
quasi-constant curvature. We may assume that the curvature vector field ζ of M̃ is a unit spacelike tangent
vector field of M and dim M̃ > 4. Denote e by the smooth function such that e = θ(N). Using (1.1), (2.23)
and the facts θ(ξ) = θ(L) = 0, we have

R̃ic(X,Y) = {(m + 2)α + β}1(X,Y) + (m + 1)βθ(X)θ(Y), (3.5)

1̃(R̃(ξ,Y)X, N) = α1(X,Y) + βθ(X)θ(Y), (3.6)

ε1̃(R̃(L,Y)X, L) = α1(X,Y) + βθ(X)θ(Y), (3.7)

for all X, Y ∈ Γ(TM). Substituting (3.5)∼(3.7) into (3.4), we have

R(0, 2)(X,Y) = (mα + β)1(X,Y) + (m − 1)βθ(X)θ(Y) (3.8)
+ B(X,Y)trAN + D(X,Y)trAL − 1(AN X,A∗ξY)
− ε 1(AL X, AL Y) + ρ(X)φ(Y), ∀X, Y ∈ Γ(TM).

Definition 1. We say that the screen distribution S(TM) of M is totally umbilical [6] in M if, on any
coordinate neighborhoodU ⊂M, there is a smooth function γ such that AN X = γPX for any X ∈ Γ(TM), or
equivalently,

C(X,PY) = γ 1(X,Y), ∀X, Y ∈ Γ(TM). (3.9)

In case γ = 0 onU, we say that S(TM) is totally geodesic in M.

Theorem 3.2. Let M be a half lightlike submanifold of a semi-Riemannian manifold (M̃, 1̃) of quasi-constant
curvature. If the curvature vector field ζ of M̃ is tangent to M, S(TM) is totally umbilical in M and S(TM⊥) is a
conformal Killing distribution, then the tensor field R(0, 2) is an induced symmetric Ricci tensor of M.

Proof. From (2.9), (2.13), (2.14), (2.26) and (3.8), for all X, Y ∈ Γ(TM), we have

D(X,Y) = εδ 1(X,Y), φ(X) = 0, AL X = δPX + ερ(X)ξ ; (3.10)

R(0, 2)(X,Y) = {mα + β + (m − 1)εδ2 + δρ(ξ)} 1(X,Y) + mγB(X,Y) (3.11)
+ (m − 1)βθ(X)θ(Y) − γ 1(X, A∗ξY), ∀X, Y ∈ Γ(TM).

Using (3.11) and the fact A∗ξ is self-adjoint, we show that R(0, 2) is symmetric.

3.1. Proof of Theorem 1.1

As C = 0, we have 1̃(R(X,Y)PZ, N) = 0 due to (2.22). From (2.18) and (3.10)1, we have 1̃(R̃(X,Y)PZ, N) =

δ{1(X,PZ)ρ(Y)−1(Y,PZ)ρ(X)}. By Theorem 3.1 and 3.2, we get dτ = 0 on TM. Thus we have 1̃(R̃(X,Y)ξ, N) =
0 due to (2.20). From the above results, we deduce the following equation

1̃(R̃(X,Y)Z, N) = δ{1(X,Z)ρ(Y) − 1(Y,Z)ρ(X)}, ∀X, Y, Z ∈ Γ(TM). (3.12)

Replacing X by ξ and Z by X to (3.12) and then, comparing with (3.6), we have

βθ(X)θ(Y) = − {α + δρ(ξ)} 1(X,Y), ∀X, Y ∈ Γ(TM). (3.13)

Case (1). If S(TM⊥) is a Killing distribution, i.e., δ = 0, then we have

βθ(X)θ(Y) = −α 1(X,Y), ∀X, Y ∈ Γ(TM). (3.14)
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Substituting (3.14) into (1.1) and using (2.16) and the facts 1̃(R̃(X,Y)Z, ξ) = 0 and 1̃(R̃(X,Y)Z, L) = 0 due to
(1.1), we have

R(X,Y)Z = −α{1(Y,Z)X − 1(X,Z)Y}, ∀X, Y, Z ∈ Γ(TM). (3.15)

Thus M is a space of constant curvature −α. Taking X = Y = ζ to (3.14), we have β = −α. Substituting
(3.14) into (3.11) with δ = γ = 0, we have

Ric(X,Y) = 0, ∀X, Y ∈ Γ(TM).

On the other hand, substituting (3.15) and 1(R(ξ,Y)X, N) = 0 into (3.3), we have

Ric(X,Y) = − (m − 1)α 1(X,Y), ∀X, Y ∈ Γ(TM).

From the last two equations, we get α = 0 as m > 1. Thus β = 0 and M̃ and M are flat manifolds by (1.1) and
(3.15). From this result and (2.21), we show that M∗ is also flat.

Case (2). If S(TM⊥) is a conformal Killing distribution. Assume that β , 0. Taking X = Y = ζ to (3.13),
we have β = −{α + δρ(ξ)}. From this and (3.13), we show that

1(X,Y) = θ(X)θ(Y), ∀X, Y ∈ Γ(TM). (3.16)

Substituting (3.16) into (1.1) and using (2.16) with C = 0 and (3.10)1, we have

1(R(X,Y)Z, W) = (α + 2β + εδ2){1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)}, (3.17)

for all X, Y, Z, W ∈ Γ(TM). Substituting (3.16) into (3.11) with γ = 0, we have

Ric(X,Y) = (m − 1){α + β + εδ2
}1(X,Y), ∀X, Y ∈ Γ(TM),

due to the fact δρ(ξ) = −(α+ β). On the other hand, from (2.18), (3.6) and (3.13), we have 1(R(ξ,Y)X, N) = 0.
Substituting this result and (3.17) into (3.3), we have

Ric(X,Y) = (m − 1){α + 2β + εδ2
} 1(X,Y), ∀X, Y ∈ Γ(TM).

The last two equations imply β = 0 as m > 1. It is a contradiction. Thus β = 0 and M̃ is a space of constant
curvature α. From (2.21) and (3.17), we show that M∗ is a space of constant curvature (α + εδ2). But M is
not a space of constant curvature by (3.10)3.

Let κ = (m − 1)(α + εδ2). Then the last two equations reduce to

R(0, 2)(X,Y) = Ric(X,Y) = κ1(X,Y), ∀X, Y ∈ Γ(TM). (3.18)

Thus M is an Einstein manifold. The scalar quantity r of M [4], obtained from R(0, 2) by the method of (2.25),
is given by

r = R(0, 2)(ξ, ξ) +

m∑
a=1

εa R(0, 2)(Wa,Wa).

Since M is an Einstein manifold satisfying (3.18), we obtain

r = κ1(ξ, ξ) + κ
m∑

a=1

εa 1(Wa, Wa) = κm.

Thus we have

Ric(X,Y) = (r/m)1(X,Y)

which provides a geometric interpretation of half lightlike Einstein submanifold (same as in Riemannian
case) as we have shown that the constant κ = r/m.
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3.2. Proof of Theorem 1.2
Assume that ζ is tangent to M, S(TM) is totally umbilical and S(TM⊥) is a conformal Killing vector

field. Using (1.1), the equation (2.19) reduce to

(∇XD)(Y,Z) − (∇YD)(X,Z) = B(X,Z)ρ(Y) − B(Y,Z)ρ(X), (3.19)

for all X, Y, Z ∈ Γ(TM). Replacing W by N to (1.1), we have

1̃(R̃(X,Y)Z, N) = {αη(X) + eβθ(X)}1(Y,Z) (3.20)
− {αη(Y) + eβθ(Y)}1(X,Z) + β{θ(Y)η(X) − θ(X)η(Y)}θ(Z),

for all X, Y, Z ∈ Γ(TM). Applying ∇X to (3.9) and using (2.10), we have

(∇XC)(Y,PZ) = (Xγ)1(Y,PZ) + γB(X,PZ)η(Y), ∀X, Y, Z ∈ Γ(TM).

Substituting this equation into (2.22), we obtain

1̃(R(X,Y)PZ, N) = {Xγ − γτ(X)}1(Y,PZ) − {Yγ − γτ(Y)}1(X,PZ)
+ γB(X,PZ)η(Y) − γB(Y,PZ)η(X), ∀X, Y, Z ∈ Γ(TM).

Substituting this equation and (3.20) into (2.18) and using θ(ξ) = 0, we obtain

γB(X,Z)η(Y) − {Y[γ] − γτ(Y) − αη(Y) − eβθ(Y) − δρ(Y)}1(X,Z)
= γB(Y,Z)η(X) − {X[γ] − γτ(X) − αη(X) − eβθ(X) − δρ(X)}1(Y,Z)

+ β{θ(Y)η(X) − θ(X)η(Y)}θ(Z), ∀X, Y, Z ∈ Γ(TM).

Replacing Y by ξ to this and using (2.9)1 and the fact θ(ξ) = 0, we have

γB(X,Y) = {ξ[γ] − γτ(ξ) − α − δρ(ξ)}1(X,Y) − βθ(X)θ(Y), (3.21)

for all X, Y ∈ Γ(TM). Differentiating (2.26) and using (3.19), we have

{δη(X) − ερ(X)}B(Y,Z) − {δη(Y) − ερ(Y)}B(X,Z)
= (Xδ) 1(Y,Z) − (Yδ) 1(X,Z).

Replacing Y by ξ in the last equation and using (2.9)1, we obtain

{δ − ερ(ξ)}B(X,Z) = (ξδ) 1(X,Z).

As the conformal factor δ is non-constant, we show that δ − ερ(ξ) , 0. Thus we have

B(X,Y) = σ1(X,Y), ∀X, Y ∈ Γ(TM), (3.22)

where σ = (ξδ)(δ − ερ(ξ))−1. From (3.10)1 and (3.22), we show that the second fundamental form tensor h,
given by h(X,Y) = B(X,Y)N + D(X,Y)L, satisfies

h(X,Y) = H 1(X,Y), ∀X, Y ∈ Γ(TM).

Thus M is totally umbilical. Substituting (3.22) into (3.21), we have

{ξ[γ] − γτ(ξ) − σγ − α − δρ(ξ)}1(X,Y) = βθ(X)θ(Y), ∀X, Y ∈ Γ(TM).

Taking X = Y = ζ to this equation, we have β = ξ[γ] − γτ(ξ) − σγ − α − δρ(ξ).
Assume that β , 0. Then we have

1(X,Y) = θ(X)θ(Y), ∀X, Y ∈ Γ(TM). (3.23)
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Substituting (3.23) into (1.1) and using (2.16), (3.9) and (3.10)1, we have

1(R(X,Y)Z, W) = (α + 2β + σγ + εδ2){1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)}, (3.24)

for all X, Y, Z, W ∈ Γ(TM). Substituting (3.22) and (3.23) into (3.11), we have

Ric(X,Y) = {m(α + β) + (m − 1)(σγ + εδ2) + δρ(ξ)}1(X,Y). (3.25)

On the other hand, substituting (3.24) and the fact

1̃(R(ξ,Y)X, N) = {α + β + δρ(ξ)}1(X,Y)

into (3.3), we have

Ric(X,Y) = {mα + (2m − 1)β + (m − 1)(σγ + εδ2) + δρ(ξ)}1(X,Y). (3.26)

Comparing (3.25) and (3.26), we obtain (m − 1)β = 0. As m > 1, we have β = 0. It is a contradiction. Thus
we have β = 0. Consequently, by (1.1), (2.21) and (3.24), we show that M̃ and M∗ are spaces of constant
curvatures α and (α + 2σγ + εδ2) respectively.

Let κ = mα + (m − 1)(σγ + εδ2) + δρ(ξ). Then (3.25) and (3.26) reduce to

R(0, 2)(X,Y) = Ric(X,Y) = κ1(X,Y), ∀X, Y ∈ Γ(TM).

Thus M is an Einstein manifold. The scalar quantity r of M is given by

r = R(0, 2)(ξ, ξ) +

m∑
a=1

εa R(0, 2)(Wa,Wa)

= κ1(ξ, ξ) + κ
m∑

a=1

εa 1(Wa, Wa) = κm.

Thus we have

Ric(X,Y) = (r/m)1(X,Y).
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