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Abstract. By using the Cauchy integral formula in the theory of complex functions, the authors establish
some integral representations for the principal branches of several complex functions involving the loga-
rithmic function, find some properties, such as being operator monotone function, being complete Bernstein
function, and being Stieltjes function, for these functions, and verify a conjecture on complete monotonicity
of a function involving the logarithmic function.

1. Preliminaries

We recall some definitions, notion, and characterizations.

Definition 1.1 ([25, Chapter IV]). An infinitely differentiable function f on an interval I is said to be
completely monotonic on I if it satisfies

(−1)n−1 f (n−1)(t) ≥ 0

for x ∈ I and n ∈N, whereN stands for the set of all positive integers.

For our own convenience, we denote the class of all completely monotonic functions on an interval I by
the notation C[I]. The class C[(0,∞)] may be characterized by

Proposition 1.1 ([25, Theorem 12b]). A necessary and sufficient condition that f (x) should be completely monotonic
for 0 < x < ∞ is that

f (x) =

∫
∞

0
e−xt dα(t),

where α(t) is non-decreasing and the integral converges for 0 < x < ∞.
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Definition 1.2 ([9, 14, 20]). Let f (x) be a completely monotonic function on (0,∞) and denote

f (∞) = lim
x→∞

f (x).

If for some r ∈ R the function xr[ f (x) − f (∞)] is completely monotonic on (0,∞) but xr+ε[ f (x) − f (∞)] is not
for any positive number ε > 0, then we say that the number r is the completely monotonic degree of f (x)
with respect to x ∈ (0,∞); if for all r ∈ R each and every xr[ f (x) − f (∞)] is completely monotonic on (0,∞),
then we say that the completely monotonic degree of f (x) with respect to x ∈ (0,∞) is∞.

For convenience and simplicity, the notation

degx
cm[ f (x)]

was designed in [6, p. 9890] to denote the completely monotonic degree of f (x) with respect to x ∈ (0,∞).
Completely monotonic functions on (0,∞) of degree r ≥ 0 with respect to x can be characterized by [11,
Remark 1.6] which may be reformulated as follows.

Proposition 1.2. Let f (x) be a completely monotonic function on (0,∞) and

Γ(z) =

∫
∞

0
tz−1e−t d t

for<(z) > 0 stand for the classical Euler’s gamma function. Then degt
cm[ f (t)] = r ≥ 0 if and only if

f (x) =

∫
∞

0

[ 1
Γ(α)

∫ s

0
(s − τ)α−1 dµα(τ)

]
e−xs d s

converges for all 0 ≤ α ≤ r and 0 < x < ∞, where µα(τ) is a family of non-negative measures on (0,∞) if and only if
0 ≤ α ≤ r.

Remark 1.1. It was proved in [14, Section 1.5] that the completely monotonic degree degx
cm[ f (x)] equals ∞

if and only if f (x) is nonnegative and identically constant.

Remark 1.2. For more information and recent results on the gamma function Γ(z), please refer to [13] and
closely related references therein.

Definition 1.3 ([1, 2, 7, 15, 16, 19, 21]). An infinitely differentiable and positive function f is said to be
logarithmically completely monotonic on an interval I if

(−1)k[ln f (x)](k)
≥ 0

hold on I for all k ∈N.

Definition 1.4 ([23, Definition 2.1]). If a function f : (0,∞)→ [0,∞) can be written in the form

f (x) =
a
x

+ b +

∫
∞

0

1
s + x

dµ(s), (1.1)

where a, b are non-negative constants and µ is a measure on (0,∞) such that
∫
∞

0
1

1+s dµ(s) < ∞, then we say
that f is a Stieltjes function.

Proposition 1.3 ([2, 7, 15]). The inclusions

L[I] ⊂ C[I] and S \ {0} ⊂ L[(0,∞)] (1.2)

are valid, where S, L[I], and C[I] denote respectively the set of all Stieltjes functions, the set of all logarithmically
completely monotonic functions on an interval I, and the set of all completely monotonic functions on I.
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Definition 1.5 ([23]). An infinitely differentiable function f : I→ [0,∞) is called a Bernstein function on an
interval I if f ′(t) is completely monotonic on I.

We denote the group of all Bernstein functions on an interval I by B[I].

Proposition 1.4 ([23, Theorem 3.2]). A function f : (0,∞)→ [0,∞) is a Bernstein function if and only if it admits
the representation

f (x) = a + bx +

∫
∞

0

(
1 − e−xt

)
dµ(t), (1.3)

where a, b ≥ 0 and µ is a measure on (0,∞) satisfying
∫
∞

0 min{1, t}dµ(t) < ∞. In particular, the triplet (a, b, µ)
determines f uniquely and vice versa.

The formula (1.3) is called Lévy-Khintchine representation of f . The representing measure µ and the
characteristic triplet (a, b, µ) from (1.3) are often respectively called Lévy measure and Lévy triplet of the
Bernstein function f .

Definition 1.6 ([23, Definition 6.1]). If Lévy measure µ from (1.3) has a completely monotonic density m(t)
with respect to Lebesgue measure, that is, the integral representation

f (x) = a + bx +

∫
∞

0

(
1 − e−xt

)
m(t) d t

holds for a, b ≥ 0, where m(t) is a completely monotonic function on (0,∞) and satisfies
∫
∞

0 min{1, t}m(t) d t <
∞, then f is said to be a complete Bernstein function on (0,∞).

We denote the collection of all complete Bernstein functions on (0,∞) by CB.

Definition 1.7 ([23, Definition 8.1]). If the function tm(t) is completely monotonic on (0,∞), then f is said
to be a Thorin-Bernstein function on (0,∞).

We use TB to denote the class of all Thorin-Bernstein functions on (0,∞).

Definition 1.8 ([9, 20] and [22, Definition 1.4]). If degt
cm[m(t)] = r for some r ≥ 0, then f is said to be a

complete Bernstein function of degree r, or say, the scalar r is said to be the degree of the complete Bernstein
function f on (0,∞).

Similar to degt
cm[ f (t)], we use the notation

degt
cb[ f (t)]

to represent the degree of the complete Bernstein function f on (0,∞).

Definition 1.9 ([3, Definition 2]). LetM+
n denote the space of n×n complex Hermitian positive semi-definite

matrices with the usual ordering that A ≤ B means that B − A is a positive matrix. For a real function f on
an interval I, if D is a diagonal matrix diag(λ1, λ2, . . . , λn), then define f (D) = diag( f (λ1), f (λ2), . . . , f (λn)). If
A is an Hermitian matrix with eigenvalues belonging to I, then define f (A) = U f (D)UH, where A = UDUH

and the diagonal matrix D is constituted by the eigenvalues of A, with U being a unitary matrix and UH

being the conjugate transpose of U. A function f : I → (0,∞) is said to be matrix monotone of order n if
A ≤ B implies f (A) ≤ f (B), where A,B ∈ M+

n and the eigenvalues of A and B are contained in the interval
I. If for every n ≥ 1 a function f on an interval I is always matrix monotone of order n, then f is said to be
operator monotone on I.

We use OM[I] to denote the set of all operator monotone functions on an interval I.
Because [23, Theorem 7.3] reads that a (non-trivial) function f is a complete Bernstein function if and

only if 1
f is a (non-trivial) Stieltjes function, we may define a new notion “degree of Stieltjes function” as

follows.
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Definition 1.10. Let f (t) be a Stieltjes function. If degt
cb

[
1

f (t)

]
= r for some r ≥ 0, then f (t) is said to be a

Stieltjes function of degree r, or say, the scalar r is said to be the degree of the Steltjes function f on (0,∞).

Similar to the above mentioned degt
cm[ f (t)] and degt

cb[ f (t)], we use

degt
s[ f (t)]

to represent the degree of the Stieltjes function f .
Remark 1.3. Since a complete Bernstein function is of degree ∞ if and only if it is a linear function a + bx
with a, b ≥ 0, see [22], then degx

s [ f (x)] = ∞ if and only if f (x) = 1
a+bx for (a, b) ∈ [0,∞) × [0,∞) \ {(0, 0)}.

It is stated in [23, Theorem 12.17] that the families of complete Bernstein factions and positive operator
monotone functions on (0,∞) coincide. Therefore, we may introduce a new notion “degree of a positive
operator monotone function” as follows.

Definition 1.11. Let f (t) be a positive operator monotone function on (0,∞). If degt
cb[ f (t)] = r for some

r ≥ 0, then f (t) is said to be a positive operator monotone function of degree r, or say, the scalar r is said to
be the degree of the positive operator monotone function f on (0,∞).

Similar to the above mentioned degt
cm[ f (t)], degt

cb[ f (t)], and degt
s[ f (t)], we use

degt
op[ f (t)]

to represent the degree of a positive operator monotone function f .
Remark 1.4. As mentioned above, a complete Bernstein function is of degree ∞ if and only if it is a linear
function a + bx with a, b ≥ 0, see [22], then degx

op[ f (x)] = ∞ if and only if f (x) = a + bx for a, b ≥ 0.

2. Motivation and Main Results

Now we simply summarize up the motivation of this paper.
In [10], the double inequality

x2 + 1
x + 1

< Γ(x + 1) <
x2 + 2
x + 2

(2.1)

for x ∈ (0, 1) was obtained. In [24, Theorem 1], the double inequality (2.1) was generalized as the following
monotonicity.

Theorem 2.1. The function

Q(x) =
ln Γ(x + 1)

ln(x2 + 1) − ln(x + 1)

is strictly increasing on (0, 1), with the limits

lim
x→0+

Q(x) = γ and lim
x→1−

Q(x) = 2(1 − γ),

where γ = 0.57 . . . denotes Euler-Mascheroni’s constant.

In [24, Section 5], the following problem and conjectures were posed.

Problem 2.1 ([24, Section 5.1]). What is the largest number τ (or the smallest number τ, respectively), with
1 < τ < 6, for the function

fτ(x) =


ln Γ(x + 1)

ln(x2 + τ) − ln(x + τ)
, x , 1

(1 + τ)(1 − γ), x = 1

on (0,∞), where γ = 0.577 . . . denotes Euler-Mascheroni’s constant, to be strictly increasing (or decreasing, respec-
tively) on (0, 1)?
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Conjecture 2.1 ([24, Section 5.2]). The function f1(x) is strictly increasing not only on (0, 1) but also on (0,∞).

Conjecture 2.2 ([24, Section 5.2]). For τ ≥ 0, the function

1τ(x) =


ln Γ(x)

ln(x2 + τ) − ln(x + τ)
, x , 1

−(1 + τ)γ, x = 1

is strictly increasing on (0,∞).

Conjecture 2.3 ([24, Section 5.2]). For τ ≥ 0, let

hτ(x) =


ln x

ln(x2 + τ) − ln(x + τ)
, x , 1

1 + τ, x = 1
(2.2)

on (0,∞). The function h1(x) = h(x) is completely monotonic on (0,∞).

Problem 2.1 was answered in [12] and the answer reads that the function fτ(x) is increasing on (0, 1) if
and only if 0 ≤ τ < 6γ

π2−12γ = 1.176 . . . and that it is decreasing on (0, 1) if and only if τ ≥ π2
−6γ

18−12γ−π2 = 5.321 . . . .
Conjecture 2.1 was confirmed by [8, Theorem 1]. Consequently, by the relation

hτ(x) + 1τ(x) = fτ(x),

it follows that the function 11(x) is increasing on (0,∞), which is a partial verification to Conjecture 2.2 for
0 ≤ τ ≤ 1. However, since

11000(10) − 11000(5) =
ln(362880)

ln(1100) − ln(1010)
−

ln(24)
ln(1025) − ln(1005)

< 0,

Conjecture 2.2 is not always true. Therefore, we modify Conjecture 2.2 as the following open problem.

Problem 2.2. What is the numbers τ1 > τ0 > 1 such that,

1. when 0 ≤ τ ≤ τ0, the function 1τ(x) is increasing on (0,∞)?
2. when τ1 > τ > τ0, the function 1τ(x) is not monotonic on (0,∞)?
3. when τ ≥ τ1, the function 1τ(x) is decreasing on (0,∞)?

The aim of this paper is to verify Conjecture 2.3. To attain our aim, we need the following knowledge.
It is easy to obtain that limx→∞ h(x) = 1. Let

H(x) = h(x) − 1 =


ln x + ln(1 + x) − ln(1 + x2)

ln(1 + x2) − ln(1 + x)
, x , 1,

1, x = 1.
(2.3)

As usual, we use ln x for the logarithmic function having base e and applied to the positive argument x > 0.
Further, the principal branch of the holomorphic extension of ln x from the open half-line (0,∞) to the cut
plane

A = C \ (−∞, 0]

is denoted by

ln z = ln |z| + i arg z,
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where i =
√
−1 and the principal value of the argument of z satisfies −π < arg z < π. It is not difficult to

see that the principal branches of the holomorphic extensions of h(x) and H(z) toA are

h(z) =


ln z

ln 1+z2

1+z

, z , 1

2, z = 1
and H(z) =


ln z(1+z)

1+z2

ln 1+z2

1+z

, z , 1,

1, z = 1.

By the Cauchy integral formula in the theory of complex functions, we will obtain more and stronger
results than Conjecture 2.3, which can be formulated as the following theorems.

Theorem 2.2. For z ∈ A,

1. the principal branch of the complex function zH(z) has an integral representation

zH(z) =

∫
∞

0

ρ(t)
t + z

d t, (2.4)

where

ρ(t) =



t
ln 1+t2

1−t

, 0 < t < 1

0, t = 1

t ln t(1+t2)
t−1(

ln 1+t2

t−1

)2
+ π2

, 1 < t < 1 +
√

2

t ln 1+t2

t(t−1)(
ln 1+t2

t−1

)2
+ π2

, 1 +
√

2 ≤ t < ∞

is non-negative on (0,∞);
2. the principal branch of the complex function 1

z2H(z) has an integral representation

1
z2H(z)

=

∫
∞

0

ρ(t)
%(t)

1
t + z

d t, (2.5)

where

%(t) =



t
{[

ln 1+t2

t(1−t)

]2
+ π2

}
(
ln 1+t2

1−t

)2 , 0 < t < 1

t, t = 1

t
{[

ln 1+t2

t−1 ln 1+t2

t(t−1) + 2π2
]2

+
[
π ln t(1+t2)

t−1

]2}[(
ln 1+t2

t−1

)2
+ π2

]2 , 1 < t < 1 +
√

2

t
[
ln 1+t2

t(t−1)

]2(
ln 1+t2

t−1

)2
+ π2

, 1 +
√

2 ≤ t < ∞

is positive on (0,∞);
3. the principal branch of the complex function h(z) has an integral representation

H(z) = h(z) − 1 =

∫
∞

0

[∫ ∞

0

ρ(u)
u

(
1 − e−tu

)
d u

]
e−tz d t; (2.6)
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4. the principal branch of the complex function 1
H(z) has an integral representation

1
H(z)

= z
∫
∞

0

ρ(t)
%(t)

d t −
∫
∞

0

(
1 − e−zt

)[∫ ∞

0

u2ρ(u)
%(u)

e−ut d u
]

d t. (2.7)

Theorem 2.3. For x ∈ (0,∞) and z ∈ A,

1. h(x),H(x) ∈ C[(0,∞)], with the same integral representation (2.6) and

H(z) =
1
z

∫
∞

0

ρ(t)
t

d t −
∫
∞

0

ρ(t)
t(t + z)

d t (2.8)

and of degree

degx
cm[h(x)] = degx

cm[H(x)] = 1; (2.9)

2. 1
H(x) ∈ B[(0,∞)] and H(x) ∈ L[(0,∞)];

3. xH(x) ∈ S and xH(x) ∈ L[(0,∞)], with the integral representation (2.4) and of degree

degx
s [xH(x)] = 0; (2.10)

4. 1
xH(x) ∈ CB and 1

xH(x) ∈ OM[(0,∞)], with Lévy-Khintchine representation

1
zH(z)

=

∫
∞

0

[∫ ∞

0

uρ(u)
%(u)

e−tu d u
](

1 − e−zt
)

d t (2.11)

and of degree

degx
cb

[ 1
xH(x)

]
= 0 and degx

op

[ 1
xH(x)

]
= 0; (2.12)

5. 1
x2H(x) ∈ S and 1

x2H(x) ∈ L[(0,∞)], with the integral representation (2.5) and of degree

degx
s

[ 1
x2H(x)

]
= 0; (2.13)

6. x2H(x) ∈ CB and x2H(x) ∈ OM[(0,∞)], with Lévy-Khintchine representation

z2H(z) =

∫
∞

0

[∫ ∞

0
uρ(u)e−tu d u

](
1 − e−zt

)
d t (2.14)

and of degree

degx
cb

[
x2H(x)

]
= 0 and degx

op

[
x2H(x)

]
= 0. (2.15)

3. Remarks

Before proving Theorems 2.2 and 2.3, we supply some remarks on them.

Remark 3.1. It is listed in [23, Proposition 7.1] and [23, p. 96] that for f (x) > 0,

1. f ∈ CB if and only if x
f (x) ∈ CB,

2. f (x) ∈ CB if and only if 1
f (1/x) ∈ CB,

3. f (x) ∈ CB if and only if x f
(

1
x

)
∈ CB,

4. f (x) ∈ S if and only if 1
f (1/x) ∈ S,
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5. f (x) ∈ S if and only if 1
x f (x) ∈ S,

6. f (x) ∈ S if and only if f (x)
ε f (x)+1 ∈ S for all ε > 0.

From these properties and the fact that H
(

1
x

)
= 1

H(x) , it follows that

1. 1
xH(x) ∈ CB if and only if x2H(x) ∈ CB,

2. xH(x) ∈ S if and only if 1
x2H(x) ∈ S,

3. xH(x) ∈ S if and only if xH(x)
εxH(x)+1 ∈ S for all ε > 0.

Remark 3.2. Corollary 7.4 in [23] states that 0 < 1 ∈ S if and only if 1(0+) exists in [0,∞] and 1 extends
analytically toA such that =(z)=(1(z)) ≤ 0. This means that

=(z)=(zH(z)) ≤ 0, =(z)=
( 1

x2H(x)

)
≤ 0, and =(z)=

( zH(z)
εzH(z) + 1

)
≤ 0

for all ε > 0 and z ∈ A. Geometrically speaking, the three Stieltjes functions zH(z), 1
x2H(x) , and zH(z)

εzH(z)+1 for all
ε > 0 map the upper half-plane to the lower half-plane and vice versa.

Remark 3.3. Find all τ > 0 such that the function hτ(x) defined by (2.2) is completely monotonic on (0,∞).

4. Lemmas

In order to prove our main results, the following lemmas are necessary.

Lemma 4.1 (Cauchy integral formula [5, p. 113]). Let D be a bounded domain with piecewise smooth boundary.
If f (z) is analytic on D, and f (z) extends smoothly to the boundary of D, then

f (z) =
1

2πi

∮
∂D

f (w)
w − z

d w, z ∈ D.

Lemma 4.2. For z = reθi
∈ A, the complex function zH(z) uniformly tends to 0 as r→∞.

Proof. By standard argument, we have

lim
r→∞
|zH(z)|2 = lim

r→0+

∣∣∣∣∣1z H
(1

z

)∣∣∣∣∣2 = lim
r→0+

∣∣∣∣∣ 1
zH(z)

∣∣∣∣∣2
= lim

r→0+

∣∣∣ln∣∣∣ 1+z2

1+z

∣∣∣ + i arg 1+z2

1+z

∣∣∣2
|z|2

∣∣∣ln∣∣∣ z(1+z)
1+z2

∣∣∣ + i arg z(1+z)
1+z2

∣∣∣2
= lim

r→0+

∣∣∣ln∣∣∣ 1+z2

1+z

∣∣∣∣∣∣2 +
∣∣∣arg 1+z2

1+z

∣∣∣2
|z|2

[∣∣∣ln∣∣∣ z(1+z)
1+z2

∣∣∣∣∣∣2 +
∣∣∣arg z(1+z)

1+z2

∣∣∣2]
= lim

r→0+

[
1
2r ln 1+2r cosθ+r2

1+2r2 cos(2θ)+r4

]2
+

[
1
r arctan r(1−2r cosθ−r2) sinθ

1+r(1+r2) cosθ+r2 cos(2θ)

]2

[
ln r + 1

2 ln 1+2r cosθ+r2

1+2r2 cos(2θ)+r4

]2
+

∣∣∣arg z(1+z)
1+z2

∣∣∣2 ,

where

lim
r→0+

[ 1
2r

ln
1 + 2r cosθ + r2

1 + 2r2 cos(2θ) + r4

]
= cosθ,

lim
r→0+

ln
1 + 2r cosθ + r2

1 + 2r2 cos(2θ) + r4 = 0,
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lim
r→0+

[1
r

arctan
r(1 − 2r cosθ − r2) sinθ

1 + r(1 + r2) cosθ + r2 cos(2θ)

]
= sinθ,

and 0 ≤
∣∣∣arg z(1+z)

1+z2

∣∣∣ ≤ π. Further considering limr→0+ ln r = −∞, Lemma 4.2 is thus proved.

Lemma 4.3. For z = reθi
∈ A and θ ∈

[
−
π
2 ,

π
2

]
, the complex function z2H(z) uniformly tends to 0 as r→ 0+.

Proof. By the same argument as in the proof of Lemma 4.2, we have

lim
r→0+

∣∣∣z2H(z)
∣∣∣2 = lim

r→0+

∣∣∣∣∣∣z2
ln

∣∣∣ z(1+z)
1+z2

∣∣∣ + i arg z(1+z)
1+z2

ln
∣∣∣ 1+z2

1+z

∣∣∣ + i arg 1+z2

1+z

∣∣∣∣∣∣
2

= lim
r→0+

[
r ln r + r

2 ln 1+2r cosθ+r2

1+2r2 cos(2θ)+r4

]2
+ r2

∣∣∣arg z(1+z)
1+z2

∣∣∣2[
1
2r ln 1+2r cosθ+r2

1+2r2 cos(2θ)+r4

]2
+

[
1
r arctan r(1−2r cosθ−r2) sinθ

1+r(1+r2) cosθ+r2 cos(2θ)

]2

= 0.

The proof of Lemma 4.3 is complete.

Lemma 4.4. When z = reθi
∈ A, the limits limz→0

1
zH(z) = 0 for θ ∈

[
−
π
2 ,

π
2

]
and limz→∞

1
z2H(z) = 0 for θ ∈ (−π, π)

converge uniformly.

Proof. This follows from similar arguments as in proofs of Lemmas 4.2 and 4.3.

Lemma 4.5. For z ∈ A, the real and imaginary parts of the principal branch of the complex function zH(z) satisfy

lim
ε→0+
<((−t + εi)H(−t + εi)) =



t ln 1+t2

t(1−t)

ln 1+t2

1−t

, 0 < t < 1;

t, t = 1;
t
[
ln 1+t2

t−1 ln 1+t2

t(t−1) + 2π2
]

(
ln 1+t2

t−1

)2
+ π2

, 1 < t < 1 +
√

2 ;

t ln 1+t2

t−1 ln 1+t2

t(t−1)(
ln 1+t2

t−1

)2
+ π2

, 1 +
√

2 ≤ t < ∞

and

lim
ε→0+
=((−t + εi)H(−t + εi)) =



−
πt

ln 1+t2

1−t

, 0 < t < 1;

0, t = 1;

−
πt ln t(1+t2)

t−1(
ln 1+t2

t−1

)2
+ π2

, 1 < t < 1 +
√

2 ;

−

πt ln 1+t2

t(t−1)(
ln 1+t2

t−1

)2
+ π2

, 1 +
√

2 ≤ t < ∞.

(4.1)

Proof. For t ∈ (0,∞) and ε > 0, when z = −t + εi, we have

ln
1 + z2

1 + z
= ln

1 + (−t + εi)2

1 − t + εi
= ln

[1 + (−t + εi)2](1 − t − εi)
(1 − t)2 + ε2
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= ln
∣∣∣∣∣ (1 − t)(t2 + 1) − ε2(t + 1) + iε(ε2 + t2

− 2t − 1)
(1 − t)2 + ε2

∣∣∣∣∣
+i arg

(1 − t)(t2 + 1) − ε2(t + 1) + iε(ε2 + t2
− 2t − 1)

(1 − t)2 + ε2

→



ln
1 + t2

1 − t
, 0 < t < 1

∞−
π
2

i, t = 1

ln
1 + t2

t − 1
− πi, 1 < t < 1 +

√
2

ln
1 + t2

t − 1
+ πi, 1 +

√
2 ≤ t < ∞

as ε→ 0+. So, it follows that

h(−t + εi) =
ln(−t + εi)

ln 1+(−t+εi)2

1−t+εi

→



ln t + πi
ln 1+t2

1−t

, 0 < t < 1

0, t = 1
ln t + πi

ln 1+t2

t−1 − πi
, 1 < t < 1 +

√
2

ln t + πi
ln 1+t2

t−1 + πi
, 1 +

√
2 ≤ t < ∞

=



ln t
ln 1+t2

1−t

+
π

ln 1+t2

1−t

i, 0 < t < 1

0, t = 1

ln t ln 1+t2

t−1 − π
2(

ln 1+t2

t−1

)2
+ π2

+
π
(
ln 1+t2

t−1 + ln t
)

(
ln 1+t2

t−1

)2
+ π2

i, 1 < t < 1 +
√

2

ln t ln 1+t2

t−1 + π2(
ln 1+t2

t−1

)2
+ π2

+
π
(
ln 1+t2

t−1 − ln t
)

(
ln 1+t2

t−1

)2
+ π2

i, 1 +
√

2 ≤ t < ∞

as ε→ 0+. As a result,

lim
ε→0+
<(h(−t + εi)) =



ln t
ln 1+t2

1−t

, 0 < t < 1;

0, t = 1;
ln t ln 1+t2

t−1 − π
2(

ln 1+t2

t−1

)2
+ π2

, 1 < t < 1 +
√

2 ;

ln t ln 1+t2

t−1 + π2(
ln 1+t2

t−1

)2
+ π2

, 1 +
√

2 ≤ t < ∞

(4.2)
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and

lim
ε→0+
=(h(−t + εi)) =



π

ln 1+t2

1−t

, 0 < t < 1;

0, t = 1;
π
(
ln 1+t2

t−1 + ln t
)

(
ln 1+t2

t−1

)2
+ π2

, 1 < t < 1 +
√

2 ;

π
(
ln 1+t2

t−1 − ln t
)

(
ln 1+t2

t−1

)2
+ π2

, 1 +
√

2 ≤ t < ∞.

(4.3)

From the relation (2.3) between h(x) and H(x) and the property of complex numbers, it follows that

<(zH(z)) =<(zh(z) − z) =<(z)<(h(z)) − =(z)=(h(z)) −<(z)

and

=(zH(z)) = =(zh(z) − z) = =(z)<(h(z)) +<(z)=(h(z)) − =(z).

Accordingly, we obtain

lim
ε→0+
<((−t + εi)H(−t + εi)) = −t lim

ε→0+
<(h(z)) + t = t

[
1 − lim

ε→0+
<(h(z))

]
and

lim
ε→0+
=((−t + εi)H(−t + εi)) = −t lim

ε→0+
=(h(z)).

Combining these with the limits (4.2) and (4.3) and simplifying yield the required limits. Lemma 4.5 is thus
proved.

Lemma 4.6 (Convolution theorem for Laplace transforms [25, pp. 91–92]). Let fi(t) for i = 1, 2 be piecewise
continuous in arbitrary finite intervals included in (0,∞). If there exist some constants Mi > 0 and ci ≥ 0 such that
| fi(t)| ≤Miecit for i = 1, 2, then∫

∞

0

[ ∫ t

0
f1(u) f2(t − u) d u

]
e−st d t =

∫
∞

0
f1(u)e−su d u

∫
∞

0
f2(v)e−sv d v.

5. Proofs of theorems

We now start out to to prove our main results stated in Theorems 2.2 and 2.3.

Proof. [Proof of Theorem 2.2] For any fixed point z0 = x0 + iy0 ∈ C \ (−∞, 0], choose ε and r such that0 < ε < |y0| ≤ |z0| < r, y0 , 0,
0 < ε < x0 = |z0| < r, y0 = 0,

and consider the positively oriented contour C(ε, r) in C \ (−∞, 0] consisting of the half circle z = εeiθ for
θ ∈

[
−
π
2 ,

π
2

]
and the half lines z = x ± iε for x ≤ 0 until they cut the circle |z| = r, which close the contour at

the points −r(ε) ± iε, where 0 < r(ε)→ r as ε→ 0. See Figure 1.
For our own convenience, in what follows, let us denote zH(z) by G(z).
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x

y

z = εeiθ

|z| = r

z = x+ εi−r(ε) + εi

z = x− εi−r(ε)− εi

O

−ε

ε

−r

Figure 1: The contour C(ε, r)

Applying the Cauchy integral formula in Lemma 4.1 to the function G(z) on the domain enclosed by the
contour C(ε, r) gives

G(z0) =
1

2πi

[∫ −π/2

π/2

εieiθG
(
εeiθ

)
εeiθ − z0

dθ +

∫ arg[−r(ε)+εi]

arg[−r(ε)−εi]

ireiθG
(
reiθ

)
reiθ − z0

dθ

+

∫ 0

−r(ε)

G(t + εi)
t + εi − z0

d t +

∫
−r(ε)

0

G(t − εi)
t − εi − z0

d t
]
.

(5.1)

By virtue of Lemma 4.2, we deduce that

lim
ε→0+

r→∞

∫ arg[−r(ε)+εi]

arg[−r(ε)−εi]

ireiθG
(
reiθ

)
reiθ − z0

dθ = lim
r→∞

∫ π

−π

ireiθG
(
reiθ

)
reiθ − z0

dθ = 0. (5.2)

From Lemma 4.3, we see that limz→0+ [zG(z)] = 0. Hence, we have

lim
ε→0+

∫
−π/2

π/2

εieiθG
(
εeiθ

)
εeiθ − z0

dθ = 0. (5.3)

Utilizing the readily verified formula G(z) = G(z) and the limit (4.1) in Lemma 4.5 results in∫ 0

−r(ε)

G(t + εi)
t + εi − z0

d t +

∫
−r(ε)

0

G(t − εi)
t − εi − z0

d t =

∫ 0

−r(ε)

[ G(t + εi)
t + εi − z0

−
G(t − εi)

t − εi − z0

]
d t

=

∫ 0

−r(ε)

(t − εi − z0)G(t + εi) − (t + εi − z0)G(t − εi)
(t + εi − z0)(t − εi − z0)

d t
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=

∫ 0

−r(ε)

(t − z0)[G(t + εi) − G(t − εi)] − εi[G(t − εi) + G(t + εi)]
(t + εi − z0)(t − εi − z0)

d t

= 2i
∫ 0

−r(ε)

(t − z0)=(G(t + εi)) − ε<(G(t + εi))
(t + εi − z0)(t − εi − z0)

d t

→ 2i
∫ 0

−r

limε→0+ =(G(t + εi))
t − z0

d t

= −2i
∫ r

0

limε→0+ =(G(−t + εi))
t + z0

d t

→ −2i
∫
∞

0

limε→0+ =(G(−t + εi))
t + z0

d t

= 2πi
∫
∞

0

ρ(t)
t + z0

d t

as ε → 0+ and r → ∞. Substituting (5.2), (5.3), and the above one into (5.1) and simplifying generate the
integral representation (2.4).

It is standard to show that the functions t(1+t2)
t−1 on

(
1, 1 +

√
2
)

and 1+t2

t(t−1) on
[
1 +
√

2 ,∞
)

are bigger than 1.
This implies that the function ρ(t) is non-negative on (0,∞).

By standard argument and Lemma 4.5, we may gain

lim
ε→0+
=

( 1
(−t + εi)2H(−t + εi)

)
= lim
ε→0+
=

(
−(ε=(G(−t + εi)) + t<(G(−t + εi))) + i(t=(G(−t + εi)) − ε<(G(−t + εi)))

(ε2 + t2)|G(−t + εi)|2

)
= lim
ε→0+

t=(G(−t + εi)) − ε<(G(−t + εi))
(ε2 + t2)|G(−t + εi)|2

=
limε→0+ =(G(−t + εi))
t limε→0+ |G(−t + εi)|2

and

lim
ε→0+
|G(−t + εi)|2 = lim

ε→0+
[<(G(−t + εi))]2 + lim

ε→0+
[=(G(−t + εi))]2

=



t2
{[

ln 1+t2

t(1−t)

]2
+ π2

}
(
ln 1+t2

1−t

)2 , 0 < t < 1;

t2, t = 1;

t2
{[

ln 1+t2

t−1 ln 1+t2

t(t−1) + 2π2
]2

+ π2
[
ln t(1+t2)

t−1

]2}[(
ln 1+t2

t−1

)2
+ π2

]2 , 1 < t < 1 +
√

2 ;

t2
[
ln 1+t2

t(t−1)

]2(
ln 1+t2

t−1

)2
+ π2

, 1 +
√

2 ≤ t < ∞.

By Lemma 4.4 and the same argument as in the proof of the integral representation (2.4), it follows that

1
z2H(z)

= −
1
π

∫
∞

0

1
t + z

lim
ε→0+
=

( 1
(−t + εi)2H(−t + εi)

)
d t

= −
1
π

∫
∞

0

1
t + z

limε→0+ =(G(−t + εi))
t limε→0+ |G(−t + εi)|2

d t =

∫
∞

0

1
t + z

ρ(t)
%(t)

d t.
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The integral representation (2.5) is proved.
By Lemma 4.6 and the integral representation (2.4), it is not difficult to see that

h(z) = 1 +
zH(z)

z
= 1 +

1
z

∫
∞

0

ρ(t)
t + z

d t

= 1 +

∫
∞

0
e−zt d t

∫
∞

0

∫
∞

0
ρ(t)e−u(t+z) d u d t

= 1 +

∫
∞

0
e−zt d t

∫
∞

0

[∫ ∞

0
ρ(u)e−tu d u

]
e−tz d t

= 1 +

∫
∞

0

[∫ t

0

∫
∞

0
ρ(u)e−vu d u d v

]
e−tz d t

= 1 +

∫
∞

0

[∫ ∞

0

∫ t

0
ρ(u)e−vu d v d u

]
e−tz d t

= 1 +

∫
∞

0

[∫ ∞

0

1 − e−tu

u
ρ(u) d u

]
e−tz d t.

The integral representation (2.6) is proved.
The integral representation (2.5) may be rearranged as

1
H(z)

=

∫
∞

0

ρ(t)
%(t)

z2

t + z
d t =

∫
∞

0

ρ(t)
%(t)

( t2

t + z
+ z − t

)
d t

=

∫
∞

0

∫
∞

0

t2ρ(t)
%(t)

e−(t+z)u d u d t + z
∫
∞

0

ρ(t)
%(t)

d t −
∫
∞

0

tρ(t)
%(t)

d t

=

∫
∞

0

[∫ ∞

0

u2ρ(u)
%(u)

e−ut d u
]
e−zt d t + z

∫
∞

0

ρ(t)
%(t)

d t −
∫
∞

0

tρ(t)
%(t)

d t.

Further considering limx→0+
1

H(x) = 0 and simplifying leads to the integral representation (2.7). The proof of
Theorem 2.2 is complete.

Proof. [Proof of Theorem 2.3] The properties h(x),H(x) ∈ C[(0,∞)] follow immediately from the integral
representation (2.6).

The integral representation (2.8) is a rearrangement of (2.4).
The integral representation (2.4) shows that degx

cm H(x) ≥ 1. On the other hand, if xαH(x) ∈ C[(0,∞)],
then its first derivative is non-negative, that is,

α ≤ −
xH′(x)
H(x)

=
x
(
x2 + 2x − 1

)
ln x(x+1)

x2+1 +
(
x2
− 2x − 1

)
ln x2+1

x+1

(x + 1)
(
x2 + 1

)
ln x(x+1)

x2+1 ln x2+1
x+1

→ 1

as x→ 0+. This implies that degx
cm H(x) ≤ 1. Hence, the degree in (2.9) holds.

The property 1
H(x) ∈ B[(0,∞)] follows readily from (2.7). The property H(x) ∈ L[(0,∞)] may be conclude

from [4, pp. 161–162, Theorem 3] which reads that if f ∈ B[I] then 1
f ∈ L[I] for any interval I ⊆ R.

Comparing (1.1) with (2.4) acquires xH(x) ∈ S. By [23, Theorem 7.3], it follows that 1
xH(x) ∈ CB. By the

integral representation (2.5), it follows that

1
zH(z)

=

∫
∞

0

ρ(t)
%(t)

z
t + z

d t =

∫
∞

0

tρ(t)
%(t)

(1
t
−

1
t + z

)
d t

=

∫
∞

0

tρ(t)
%(t)

[∫ ∞

0
e−tu d u −

∫
∞

0
e−(t+z)u d u

]
d t
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=

∫
∞

0

[∫ ∞

0

tρ(t)
%(t)

e−tu d t
](

1 − e−zu
)

d u.

Lévy-Khintchine representation (2.11) follows.
It is obvious that the density of Lévy-Khintchine representation (2.11) is

m(t) =

∫
∞

0

uρ(u)
%(u)

e−ut d u ∈ C[(0,∞)].

If tαm(t) ∈ C[(0,∞)], then, as discussed above,

α ≤ −
tm′(t)
m(t)

=
t
∫
∞

0
u2ρ(u)
%(u) e−ut d u∫

∞

0
uρ(u)
%(u) e−ut d u

→ 0

as t→ 0+. This implies the degrees in (2.12) and (2.10).
The properties 1

x2H(x) ∈ S and x2H(x) ∈ CB follow from (2.5) and [23, Theorem 7.3]. By (2.4), we have

z2H(z) =

∫
∞

0
ρ(t)

z
t + z

d t =

∫
∞

0

[∫ ∞

0
tρ(t)e−tu d t

](
1 − e−zu

)
d u.

Lévy-Khintchine representation (2.14) is established.
The degrees appeared in (2.15) and (2.13) may be calculated by the same argument as in the proof of the

degrees in (2.12).
By virtue of the second inclusion in (1.2), the logarithmically complete monotonicity xH(x) ∈ L[(0,∞)]

and 1
x2H(x) ∈ L[(0,∞)] may be derived from the properties xH(x) ∈ S and 1

x2H(x) ∈ S respectively.
All of positive operator monotonicity may be deduced from the property that they are complete Bernstein

functions by available of [23, Theorem 12.17] recited on page 1662 and before Definition 1.10. The proof of
Theorem 2.3 is complete.

Remark 5.1. This paper is a slightly revised version of the preprints [17, 18].
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