In this paper, we give the definitions of statistical inner and outer limits for sequences of closed sets in metric spaces. We investigate some properties of statistical inner and outer limits. For sequences of closed sets if its statistical outer and statistical inner limits coincide, we say that the sequence is Kuratowski statistically convergent. We prove some proporties for Kuratowski statistically convergent sequences. Also, we examine the relationship between Kuratowski statistical convergence and Hausdorff statistical convergence.