A MODIFICATION OF AN OPTIMIZATION METHOD

Nada I. Đuranović-Miličić

Abstract. A modification of the Danilin-Pschenichnij method is presented. Under certain assumptions it is proved that the obtained sequence of points converges to a unique optimal solution to the given problem of unconstrained optimazation and that the rate of convergence is superlinear.

1. Introduction

In this paper we are concerned with the problem of unconstrained optimization

(1)
$$\min\{\varphi(x) \mid x \in R^n\},\$$

where $\varphi: \mathbb{R}^n \to \mathbb{R}$ is a twice continuously differentiable function.

The aim of this paper is to present a modification of the Danilin-Pschenichnij method where the direction vectors are defined by the Danilin-Pschenichnij method (see [1] and [4] and the step α_k is defined by a new step-size algorithm.

2. Preliminaries

We begin first with a few preliminaries.

Suppose a sequence of points $\{x_k\}$ is given. We correspond to $\{x_k\}$ another sequence $\{y_k\}$ in this way:

$$(2) y_k = x_k + r_k,$$

where the vectors $r_k \in \mathbb{R}^n$ satisfy the following conditions:

- 1. If by D_k we denote the matrix whose columns are the vectors $r_k/||r_k||, \ldots, r_{k-n+1}/||r_{k-n+1}||$, then $|\det D_k| \ge \epsilon$ for all $k \ge n-1$, where ϵ is some predetermined small positive number.
 - 2. The vectors r_k are chosen arbitarily except for $||r_k|| \to 0$, $k \to \infty$. We define the matrix A_k by the following system of equations:

(3)
$$A_k r_{k-i} = e_{k-i}, \quad i = 0, 1, \dots, n-1; \quad k \ge n-1,$$

Received 18.10.1993

1991 Mathematics Subject Classification: 90C30

Supported by Grant 0401A of RFNS through Math. Inst. SANU

where $e_{k-i} = \nabla \varphi(y_{k-i}) - \nabla \varphi(x_{k-i})$ and r_k , y_k are elements of the sequence (2). The Danilin-Pschenichnij method generates the sequence of points $\{x_k\}$ of the from:

$$x_{k+1} = x_k - \alpha_k p_k, \quad k = 0, 1, \dots,$$

where $p_k = A_k^{-1} \nabla \varphi(x_k)$ for $k \geq n-1$, and the matrix A_k is defined by (3) (for k = 0, 1, ..., n-2 we can put, for example $p_k = \nabla \varphi(x_k)$).

The step-size α_k is computed by the following algorithm:

Step 1. Put $\alpha = 1$ and compute $x = x_k - \alpha p_k$.

Step 2. Compute $\varphi(x) = \varphi(x_k - \alpha p_k)$.

Step 3. Check the inequality

$$\varphi(x_k) - \varphi(x) \ge \epsilon \alpha \langle \nabla \varphi(x_k), p_k \rangle, \quad 0 < \epsilon < \frac{1}{2}.$$

Step 4. If the inequality (4) is statisfied, set $\alpha_k = 1$ (= α); otherwise reduce α until the condition (4) is satisfied.

In the literature there already exist the particular cases of this method obtained for special choices of the vector r_k given by Bulanij A.P. and Danilin J.M. (see [1] and [2]).

We will also need the following lemmas.

Lemma 1. (see [4]) Let $\{x_k\}$ be a bounded sequence of points, $||x_{k+1} - x_k|| \to 0$, $k \to \infty$ and let for every $k \ge n-1$ the matrix A_k be defined by (3). Then $\lim_{k\to\infty} ||A_k - H(x_k)|| = 0$, where by H(x) we denote the Hessian of the function φ at the point x.

Lemma 2. (see [4]) Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function such that there exist constants m and M, $0 < M < \infty$ with the property

(5)
$$m||y||^2 \le \langle y, H(x)y \rangle \le M||y||^2 \quad \text{for any} \quad x, y \in \mathbb{R}^n$$

and let $\{x_k\}$ be a sequence such that $\varphi(x_{k+1}) \leq \varphi(x_k)$ and $\langle \nabla \varphi(x_k), x_{k+1} - x_k \rangle \to 0$, $k \to \infty$. Then $||x_{k+1} - x_k|| \to 0$, $k \to \infty$.

Lemma 3. (see [3]) Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function such that there exists a constant m, $0 < m < \infty$ with the property

$$\langle y, H(x)y \rangle \ge m||y||^2$$
 for any $x, y \in \mathbb{R}^n$,

where H(x) is the Hessian of the function φ at the point x. Then for any point $x_0 \in \mathbb{R}^n$ the set $L = \{x \in \mathbb{R}^n | \varphi(x) \leq \varphi(x_0)\}$ is convex and bounded and

$$m||y||^2 \le \left\langle y, H(x)y \right\rangle \le M||y||^2 \quad \textit{for any} \quad x \in L, y \in \mathbb{R}^n, 0 < m < M < \infty.$$

Proposition 1. (see [4]) Let the assumptions of Lemma 2 be valid and the matrix A_k be defined by (3). Also suppose the inequality

(6)
$$\langle A_k^{-1} \nabla \varphi(x_k), \nabla \varphi(x_k) \rangle > 0$$

holds and the step α_k is computed by (4). Then, indepedent of the initial point x_0 the sequence $\{x_k\}$ defined by the iteration

$$x_{k+1} = x_k - \alpha_k A_k^{-1} \nabla \varphi(x_k), \quad \alpha_k > 0$$

has the following properties: $1.\varphi(x_{k+1}) < \varphi(x_k)$; 2. $||x_k - x^*|| \to 0$, $k \to \infty$; 3. the rate of convergence of the sequence $\{x_k\}$ to the point x^* is superlinear.

3. The modification of the Danilin-Pschenichnij method

Now we can present the modification of the Danilinp-Pschenichnij method. The modified Danilinp-Pschenichnij algorithm is an iterative algorithm for finding an optimal solution to the problem (1) generating sequences of points $\{x_k\}$ of the form:

(7)
$$x_{k+1} = x_k - \alpha_k p_k, \quad k = 0, 1, 2, \dots,$$

(8)
$$p_k = A_k^{-1} \nabla \varphi(x_k), \quad k \ge n - 1,$$

where the matrix A_k is defined by (3) (for k = 0, 1, ..., n-2 we can for example put $p_k = \nabla \varphi(x_k)$).

We define the step α_k by the following step-size algorithm: Step 1. Put $\alpha = \overline{\alpha}_k = \min\{\frac{d(\langle \nabla \varphi(x_k), p_k \rangle)}{||p_k||^3}, 1\}$, where $d: [0, \infty) \to [0, \infty)$ is a function such that $\delta_1 t \leq d(t) \leq \delta_2 t$ for any $t \geq 0$ and some $0 < \delta_1 < \delta_2$. Step 2. If the inequality

(9)
$$\varphi(x_k) - \varphi(x_k - \alpha p_k) \ge \epsilon \alpha^2 d(\langle \nabla \varphi(x_k), p_k \rangle), \quad 0 < \epsilon < \frac{1}{2}$$

is satisfied for $\alpha = \overline{\alpha}_k$, set $\alpha_k = \overline{\alpha}_k$; otherwise reduce $\overline{\alpha}_k$ until the condition (9) is satisfied.

Theorem. Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function with the property

(10)
$$\langle H(x)y, y \rangle \ge m||y||^2 \text{ for any } x, y \in \mathbb{R}^n, \quad 0 < m < \infty,$$

let the sequence $\{x_k\}$ be defined by the relations (7) and (8). If the condition (6) is satisfied and the step α_k is defined by the above step-size algorithm, then: 1. $x_k \in L = \{x \in R^n | \varphi(x) \le \varphi(x_0)\}; \ 2. \ \varphi(x_{k+1} < \varphi(x_k); \ 3. \ ||x_k - x^*|| \to 0, \ k \to \infty,$ where x* is the inique optimal solution to the problem (1).

If, in addition to the above conditions $\delta_1 < \delta_2 \le \frac{2^{\delta_1}}{2\epsilon \delta_1 + 1}$, $0 < \delta_1 < \frac{1}{2\epsilon}$, then the rate of convergence is superlinear.

PROOF. Firstly we shall prove that the sequence $\{x_k\}$ satisfies the assumptions of Lemma 1. We proceed by induction and assume that $x_k \in L$ and $\nabla \varphi(x_k) \neq 0$. From the condition (6) it follows that

(11)
$$\langle \nabla \varphi(x_k), p_k \rangle = \langle \nabla \varphi(x_k), A_k^{-1} \nabla \varphi(x_k) \rangle > 0$$
 for any $k \ge n - 1$

By the Taylor's theorem, we have for $\alpha > 0$:

$$\varphi(x_k) - \varphi(x_k - \alpha p_k) = \alpha \langle \nabla \varphi(x_k), p_k \rangle - \frac{\alpha^2}{2} \langle H(\xi_k) p_k, p_k \rangle =$$

$$(\xi_k = x_k - \theta_k \alpha p_k, \quad \theta_k \in (0,1))$$

$$\alpha d(\langle \nabla \varphi(x_k), p_k \rangle) \left[\frac{\langle \nabla \varphi(x_k), p_k \rangle}{d(\langle \nabla \varphi(x_k), p_k \rangle)} - \frac{\alpha}{2} \frac{\langle H(\xi_k) p_k, p_k \rangle}{d(\langle \nabla \varphi(x_k), p_k \rangle)} \right].$$

From (11) it follows that $d(\langle \nabla \varphi(x_k), p_k \rangle) > 0$. Consequently, the inequality (9) holds if

$$\frac{\left\langle \nabla \varphi(x_k), p_k \right\rangle}{d(\left\langle \nabla \varphi(x_k), p_k \right\rangle)} - \frac{\alpha}{2} \frac{\left\langle H(\xi_k) p_k, p_k \right\rangle}{d(\left\langle \nabla \varphi(x_k), p_k \right\rangle)} \ge \alpha \epsilon$$

that is

(12)
$$\frac{1}{\alpha} \frac{\left\langle \nabla \varphi(x_k), p_k \right\rangle}{d(\left\langle \nabla \varphi(x_k), p_k \right\rangle)} - \frac{1}{2} \frac{\left\langle H(\xi_k) p_k, p_k \right\rangle}{d(\left\langle \nabla \varphi(x_k), p_k \right\rangle)} \ge \epsilon.$$

Since $\frac{\langle \nabla \varphi(x_k), p_k \rangle}{d(\langle \nabla \varphi(x_k), p_k \rangle)} > 0$ and by the inequality (10) $\frac{\langle H(\xi_k)p_k, p_k \rangle}{d(\langle \nabla \varphi(x_k), p_k \rangle)} > 0$, for some $\alpha = \alpha_k$ the inequality (12) will hold, and consequently the condition (9).

From the relation (9) it follows that $\varphi(x_{k+1}) < \varphi(x_k)$ and $x_{k+1} \in L = \{x \in R^n | \varphi(x) \le \varphi(x_0)\}$, where L (by Lemma 3) is a compact and convex set. Since the function φ is bounded below on the compact and convex set L, it follows that $\varphi(x_{k+1}) - \varphi(x_k) \to 0$, $k \to \infty$. Hence by (9) it follows that

(13)
$$\alpha_k^2 d(\langle \nabla \varphi(x_k), p_k \rangle) \to 0, \quad k \to \infty.$$

Furtheon, since $\alpha_k \leq \overline{\alpha}_k \leq \frac{d(\langle \nabla \varphi(x_k), p_k \rangle)}{\|p_k\|^3}$ we have that $d(\langle \nabla \varphi(x_k), p_k \rangle) \geq \alpha_k \|p_k\|^3$.

From this inequality using (13) we obtain

(14)
$$\alpha_k^3 ||p_k||^3 \le \alpha_k^2 d(\langle \nabla \varphi(x_k), p_k \rangle) \to 0, \quad k \to \infty.$$

From (14) if follows that $||x_{k+1} - x_k|| = \alpha_k ||p_k|| \to 0$, $k \to \infty$. Consequently, all assumptions of Lemma 1 are satisfied. Hence, we have

(15)
$$||A_k - H(x_k)|| \to 0, \quad k \to \infty.$$

From (15) and Lemma 3, if follows that for any M_1 such that $M_1 \geq M$ and m satisfying $0 < m_1 \leq m$ there exist an integer k_0 such that for $k \geq k_0$ and any $y \in \mathbb{R}^n$

$$(16) m_1||y|| \le \langle A_k y, y \rangle \le M_1||y||^2$$

holds.

This relation implies

(17)
$$m_1 ||p_k||^2 \le \langle A_k p_k, p_k \rangle = \langle \nabla \varphi(x_k), p_k \rangle \le M_1 ||p_k||^2, \quad k \ge k_0.$$

By (16) we have that for sufficiently large k

(18)
$$\frac{d(\langle \nabla \varphi(x_k), p_k \rangle)}{\|p_k\|^3} \ge \frac{\delta_1 \langle \nabla \varphi(x_k), p_k \rangle}{\|p_k\|^3} \ge \frac{\delta_1 m_1}{\|p_k\|}.$$

Since $\nabla \varphi$ is bounded on L, applying (16) we get

$$||p_k|| = ||A_k^{-1} \nabla \varphi(x_k)|| \le \frac{1}{m_1} K$$
 for any $k \ge n - 1$.

From (17) and (18) we obtain

$$\frac{d(\langle \nabla \varphi(x_k), p_k \rangle)}{\|p_k\|^3} \ge \frac{\delta_1 m_1^2}{K} = \overline{\alpha} > 0.$$

Since $\overline{\alpha}_k = \min\{\frac{d(\langle \nabla \varphi(x_k), p_k \rangle)}{\|p_k\|^3}, 1\}$, we have that for sufficiently large $k \ \overline{\alpha}_k \ge \overline{\alpha} > 0$. Furtheon, since, $\delta_1 t \le d(t) \le \delta_2 t$, by Lemma 3

$$m||y||^2 \le \langle H(x)y, y \rangle \le M||y||^2$$
 for any $x \in L, y \in \mathbb{R}^n$

It is evident that the condition (12) is satisfied if the following is valid:

(19)
$$\frac{1}{\alpha} \frac{\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle}{d(\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle)} - \frac{1}{2} \frac{\left\langle H(\xi_{k}) p_{k}, p_{k} \right\rangle}{d(\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle)} \ge \\
\frac{1}{\alpha} \frac{\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle}{\delta_{2} \left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle} - \frac{1}{2} \frac{M \|p_{k}\|^{2}}{\delta_{1} \left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle} \ge \\
\ge \frac{1}{\alpha \delta_{2}} - \frac{M}{2\delta_{1}} \frac{\|p_{k}\|^{2}}{m_{1} \|p_{k}\|^{2}} = \frac{1}{\alpha \delta_{2}} - \frac{M}{2m_{1} \delta_{1}} \ge \epsilon.$$

From (19) it follows that

(20)
$$0 < \alpha \le \frac{2\delta_1 m_1}{\delta_2 (2\delta_1 m_1 \epsilon + M)}.$$

This relation implies that there exists a constant α^* , $0 < \alpha^* < \frac{2\delta_1 m_1}{\delta_2(2\delta_1 m_1 \epsilon + M)}$ such that the inequality (19) is satisfied for any k if $\alpha^* \le \alpha_k \le \frac{2\delta_1 m_1}{\delta_2(2\delta_1 m_1 \epsilon + M)}$.

Now, since $\alpha_k \geq \alpha^*$ and $\overline{\alpha}_k \geq \overline{\alpha}$ for sufficiently large k it follows that there exist a constant C > 0, such that $\alpha_k \geq C > 0$. Hence,

(21)
$$||p_k|| = \frac{1}{\alpha_k} ||x_{k+1} - x_k|| \le \frac{||x_{k+1} - x_k||}{C} \to 0, \quad k \to \infty.$$

From (161) and (21) we get

(22)
$$\|\nabla \varphi(x_k)\| = \|A_k p_k\| \le M_1 \|p_k\| \to 0, \quad k \to \infty.$$

Since the function φ is strictly convex and $\{x_k\} \subset L$, where L is a copmact convex set, applying (22) we have that the sequence $\{x_k\}$ converges to a unique optimal solution x^* to the problem (1).

Now we shall show that $\alpha_k = 1$ for sufficiently large k. The relations (18) and (21) imply the following:

$$\frac{d(\langle \nabla \varphi(x_k), p_k \rangle)}{\|p_k\|^3} \ge \frac{\delta_1 m_1}{\|p_k\|^3} \to \infty \quad k \to \infty.$$

From this relation and the definition of $\overline{\alpha}_k$ it follows that, for sufficiently large k, $\overline{\alpha}_k = 1$.

Furtheon, since the step-size α_k must satisfy the condition (12), by the assuptions of Theorem we have

(23)
$$\frac{1}{\alpha_{k}} \frac{\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle}{d(\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle)} - \frac{1}{2} \frac{\left\langle H(\xi_{k}) p_{k}, p_{k} \right\rangle}{d(\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle)} \ge \dots \\
\ge \frac{1}{\alpha_{k} \delta_{2}} - \frac{1}{2\delta_{1}} \frac{\left\langle H(\xi_{k}) p_{k}, p_{k} \right\rangle}{\left\langle \nabla \varphi(x_{k}), p_{k} \right\rangle} \ge \epsilon,$$

 $\xi_k = x_k + \theta_k(x_{k+1} - x_k), \, \theta_k \in (0, 1).$ Since

$$\frac{\left\langle H(\xi_k)p_k, p_k \right\rangle}{\left\langle \nabla \varphi(x_k), p_k \right\rangle} = \frac{\left\langle [H(\xi_k) - H(x_k)]p_k, p_k \right\rangle}{\left\langle A_k p_k, p_k \right\rangle} + \frac{\left\langle H(x_k)p_k, p_k \right\rangle}{\left\langle A_k p_k, p_k \right\rangle},$$

by (15),(21) and uniform continuity of H on L, if $k \to \infty$ then $\frac{\langle H(\xi_k)p_k, p_k \rangle}{\langle \nabla \varphi(x_k), p_k \rangle} \to 1$.

Consequently, by (23), for sufficiently large k we obtain:

$$\frac{1}{\alpha_k} \frac{\left\langle \nabla \varphi(x_k), p_k \right\rangle}{d(\left\langle \nabla \varphi(x_k), p_k \right\rangle)} - \frac{1}{2} \frac{\left\langle H(\xi_k) p_k, p_k \right\rangle}{d(\left\langle \nabla \varphi(x_k), p_k \right\rangle)} \ge \dots$$

$$\ge \frac{1}{\alpha_k \delta_2} - \frac{1}{2\delta_1} \ge \epsilon.$$

It is easy to show that the last inequality is satisfied if $\delta_1 < \delta_2 \le \frac{2\delta_1}{1 + 2\epsilon\delta_1}$, $0 < \delta_1 < \frac{1}{2\epsilon}$, $\alpha_k = 1$.

It means that for sufficiently large k the inequality (9) i also satisfied for $\alpha_k = 1$. Now we can estimate the rate of convergence. We have:

$$||x_{k+1} - x_k||^2 = \langle x_{k+1} - x^*, x_{k+1} - x^* \rangle = \langle x_k - x^* - A_k^{-1} \nabla \varphi(x_k), x_{k+1} - x^* \rangle.$$

By the Mean Value Theorem we obtain:

$$\langle A_k^{-1} \nabla \varphi(x_k), x_{k+1} - x^* \rangle = \langle A_k^{-1} [\nabla \varphi(x_k) - \nabla \varphi(x^*)], x_{k+1} - x^* \rangle =$$

$$\langle A_k^{-1} H(\eta_k) (x_k - x^*), x_{k+1} - x^* \rangle, \quad \eta_k = x_k + \nu_k (x_k - x^*), \nu_k \in (0, 1).$$

The last two inequalities imply

$$||x_{k+1} - x^*||^2 = \langle (I - A_k^{-1} H(\eta_k)(x_k - x^*), (x_{k+1} - x^*) \rangle =$$

$$= \langle (A_k^{-1} (A_k - H(\eta_k))(x_k - x^*), (x_{k+1} - x^*) \rangle \leq$$

$$\leq ||A_k^{-1}|| ||(A_k - H(\eta_k))|| ||x_k - x^*|| ||x_{k+1} - x^*|| \leq$$

$$\leq \frac{1}{m_1} ||(A_k - H(\eta_k))|| ||x_k - x^*|| ||x_{k+1} - x^*||.$$

Hence, $||x_{k+1} - x^*|| \le \gamma_k ||x_k - x^*||$, where $\gamma_k = \frac{1}{m_1} ||A_k - H(\eta_k)||$. By Lemma 1 and uniform continuity of H on L it follows that

$$||A_k - H(\eta_k)|| \le ||A_k - H(x_k)|| + ||H(x_k) - H(\eta_k)|| \to 0 \quad k \to \infty.$$

Consequently, $\gamma_k = \frac{1}{m_1} ||A_k - H(\eta_k)|| \to 0, k \to \infty.$

The last relation implies that the sequence $\{x_k\}$ converges to a unique optimal solution x^* superlinearly.

REFERENCES

 A.P. BULANIJ and J.M. DANILIN, Kvazinjutonovskije algoritmi minimizacii, osnovanie na postroenii sistem soprjažonnih vektorov, ŽVM i MF 18, (1978), 877-885.

- [2] J.M. Danilin, Metodi soprjažonnih napravljenij ne trebujušćije rešenija odnomernih zadač minimizacii, DAN SSSR 218, (1974), 513-516.
- [3] E. Polak, Computational Methods in Optimization, a Unified Approach, Academic Press, New York, 1971.
- [4] B.N. Pšeničnij and J.M. Danilin, Čislennie metodi v ekstremaljnih zadačah, Nauka, Moskva 1975.

University of Belgrade Faculty of Technology and Metallurgy Department of Mathematics Karnegijeva 4 11000 Belgrade Yugoslavia