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A MODIFICATION OF AN OPTIMIZATION METHOD

Nada I. Duranovié-Miligié

Abstract. A modification of the Danilin-Pschenichnij method is presented. Under
cerlain assumptions il is proved that the oblained sequence of poinls converges io
a unique opiimal solution to the given problem of unconsirained opitmazation and
that the rale of convergence is superlinear.

1. Introduction

In this paper we are concerned with the problem of unconstrained optimization
(1) min{p(e) | @ € R},

where ¢ : R — R is a twice continuously differentiable function.

The aim of this paper is to present a modification of the Danilin-Pschenichnij
method where the direction vectors are defined by the Danilin-Pschenichnij method
(see [1} and [4] and the step ay is defined by a new step-size algorithm.

2. Preliminaries

We begin first with a few preliminaries.
Suppose a sequence of points {z} is given. We correspond to {z;} another
sequence {yi} in this way:

(2 Ye =&+ Ty

where the vectors r, € R™ satisfy the following conditions:

1. If by D; we denote the matrix whose columns are the vectors ri/||ri|l, ...,
Ph—n+1/||Tk=n+1l|, then |detDy| > e for all k > n—1, where € is some predetermined
small positive number.

2. The vectors ry, are chosen arbitarily except for ||rz|| — 0, k — oo.

We define the matrix Ay by the following system of equations:

(3) Aptpg=ep=i; 1=0;lpn—1; kE>n-—1,
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where ex—i = V(yr-i) — V(zr—;) and rg, v are elements of the sequence (2).
The Danilin-Pschenichnij method generates the sequence of points { &t of the from:

Lhi1 = Zp — LDk, k:(}w]-;-"s

where pr = A;'Vip(zy) for k > n — 1, and the matrix A, is defined by (3) (for
k=0,1,...,n— 2 we can put, for example p; = Vi(21)).

The step-size ay, is computed by the following algorithm:

Step 1. Put @ = 1 and compute z = a3 — apg.

Step 2. Compute (z) = p(z) — apy).

Step 3. Check the inequality

() — p(z) > ca(Vga(mk),pk), 0<e< -;-

Step 4. If the inequality (4) is statisfied, set oy, = 1 (= a); otherwise reduce a
until the condition (4) is satisfied.

In the literature there already exist the particular cases of this method obtained
for special choices of the vector r; given by Bulanij A.P. and Danilin J.M. (see [1}
and [2]).

We will also need the following lemmas.

Lemma 1. (see [4]) Let {zi} be a bounded sequence of points, 241 — zx]| —
0, & — oo and let for every k > n — 1 the matriz Ay be defined by (3). Then
limp oo [|Ax — H(zi)|| = 0, where by H(z) we denote the Hessian of the function
© at the point x.

Lemma 2. (see [4]) Let ¢ : R” — R be a twice continuously differentiable function
such thal there ezist constanis m and M, 0 < M < oo with the property

(8) mllyll* < (y, H(z)y)< M||yll* for any x,ye R*

and let {21} be a sequence such that p(z441) < @(xk) and {(Vo(zz), Trpr—zp)— 0,
k—oo. Then ||zp41 — 21)| = 0, k — oo.

Lemma 3. (see [3]) Let ¢ : R™ — R be a twice continuously differentiable function
such that there ezxists a constant m, 0 < m < oo with the property

(v, H@)y)2 mllyll® for any 2,y€ R",

where H(z) is the Hessian of the function ¢ af the point x. Then for any point
zo € R" the set L = {x € R”|p(2) < p(20)} is convez and bounded and

m||y||? < (y,H(z)y}S M|yl* forany =€ LyeR'0<m< M < co.
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Proposition 1. (see [4]) Let the assumptions of Lemma 2 be valid and the matriz
Ay be defined by (3). Also suppose the inequality

(6) (A5 'Ve(zr), Vol(z))> 0

holds and the step oy, is compuied by ({). Then, indepedent of the initial point zo
the sequence {z} defined by the iferation

Tpyl = Tp — akA;1V<p(x;_.), ap >0

has the following properties: 1.p(xr41) < @(21); 2. ||op — 2*|| = 0, k — c0; 3. the
rate of convergence of the sequence {z;} to the point z* is superlinear.

3. The modification of the Danilin-Pschenichnij method

Now we can present the modification of the Danilinp-Pschenichnij method. The
modified Danilinp-Pschenichnij algorithm is an iterative algorithm for finding an

optimal solution to the problem (1) generating sequences of points {z;} of the
form:

(7) Tyl = T — OpPE, k=091:21"')

(8) pr = A ' Vp(zy), k>n-—1,

where the matrix Ay is defined by (3) (for £ = 0,1,...,n — 2 we can for example
put pi = Vip(zy)).
We define the step ay by the following step-size algorithm:

((Velar), pr))

d .
Step 1. Put a = @ = min{-—————=—=,1}, where d : [0,00) — [0,00) is a

function such that §;7 < d(t) < 85t for any ¢ > 0 and some 0 < &; < &5.
Step 2. If the inequality

(9) Plex) = plas = opy) > @?d((Vola),p)), 0<c< 3

is satisfied for o = @y, set o = @); otherwise reduce &; until the condition (9) is
satisfied.

Theorem. Lel @ : R" — R be a twice continuously differentiable function with the
property

(10) (H)y, )= mlyl? for any 2,y € R", 0<m< oo,

lel the sequence {z} be defined by the relations (7) and (8). If the condition (6)
is satisfied and the step oy, is defined by the above slep-size algorithm, then: 1.
21 € L= {z € R|p(x) < plza)}; 2 @(wrs1 < p(ar); 3. |2 — 2°] — 0, k — oo,
where z* is the inique optimal solution to the problem (1).
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. 2
If, in addition to the above conditions 6; < 84 < 2o 11 0<é < 21—6, then the

rate of convergence is superlinear.

ProoF. Firstly we shall prove that the sequence {;} satisfies the assumptions of
Lemma 1. We proceede by induction and assume that 2 € L and Vip(zy) # 0.
From the condition (6) it follows that

(11) (Veo(zr), pr)= (Veolzr), A7 'Ve(zi))>0 forany k>n-—1

By the Taylor’s theorem, we have for o > 0:
3
plzr) — oz —apy) = CV(VSO(-Tk),Pk)—*?—(H(Ek)Pk,pi_-):
(Er =z — Opapr, 6 €(0,1))

(Vo(zr),pe) o (H(E)ps,ps)
(Velzi)oe))  2d((Velzr) pr)) |

ad((‘?‘P(‘tk)lpk)) d

From (11) it follows that d({V(x1),pi)) > 0. Consequently, the inequality (9)

holds if
(Velzr),pe) a (H(&)px, pi) S
d({(Ve(ze),pe))  2d((Ve(zi) i) =
that is
(12) 1 (Ve(zr), pr) 1 (H(&)pr, pe) .
@ d((Ve(ee),pr))  2d((Ve(er), i) =
Since (th(mk),pk) > 0 and by the inequality (10) <H(Ek)'pk’m> > 0, for

d((Ve(z1), pr)) d((Ve(zi), pr))
some o = ¢y the inequality (12) will hold, and consequently the condition (9).

From the relation (9) it follows that ¢(zr41) < () and 2441 € L = {z €
R™e(z) < @(xo)}, where L (by Lemma 3) is a compact and convex set. Since
the function ¢ is bounded below on the compact and convex set L, it follows that
o(ep41) — @(zr) — 0, k — oco. Hence by (9) it follows that

(13) aid((th(:Ek),pk» = 0, k — o0.
d((Veo(zz), pi))

3 TP
ae||pe|[°.
From this inequality using (13) we obtain

Furtheon, since oy < @ < we have that d((Vi(zy), pr)) >

(14) aplleel? < efd({Vep(zi),pr)) = 0, &k — co.
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From (14) if follows that ||zy+1 — k|| = apl|pk|| — 0, & — oo. Consequently, all
assumptions of Lemma 1 are satisfied. Hence, we have

(15) !

From (15) and Lemma 3, if follows that for any M; such that M, > M and
m satisfying 0 < my < m there exist an integer kg such that for k > kp and any
yeER"

Ak - H(:lfk)” — 0, k — oco.

(16) mu|lyll < (Ary, y)< Milly||®

holds.
This relation implies

(]‘7) Tll]_“pkllz S <AkPk,Pk): (V@(mk),l’k>§ Jﬂldlllpi'\:llzs k 2 kU-

By (16) we have that for sufficiently large k

d((Ve(zi), pr)) S 51(Ve(xr), pr) " b1y

(18) P = TelP = el

Since Vy is bounded on L, applying (16) we get
1
llpell = 145 Ve(z)|| < ;I\" forany k>n-—1
1

From (17) and (18) we obtain

d({Ve(zr), pi)) S fami
PAE - K

d((Ve(zr), pr))

pi|[®
@ > 0. Furtheon, since, é1¢ < d(t) < 3t, by Lemma 3

=a>0.

Since oy = min{ , 1}, we have that for sufficiently large k @ >

m||yl|* < (H(z)y,y)< M||y||> forany z€L,yeR"
It is evident that the condition (12) is satisfied if the following is valid:

1 (Velze)pe) 1 (H(E)px pr)
ad(<v¢(‘rk))pk>) 2“’((V<,9(:L’k),pk))

2

(19) _1_ (V‘P(‘ck)apk) _1 Mrllpkllz
ab(Vo(zr),p)  26.(Vel(zr),pr) ~
LM nlF 1 M

aby 26y ma||pe|]? T abs  2myé T &
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From (19) it follows that

261?)'&1
2 0 L
( O) <es 52(251m1€+M')

261 my
52(261 mi€ + M)
261my
52(251”116 + M) '
Now, since o, > o* and @, > @ for sufficiently large k it follows that there exist
a constant C > 0, such that a; > C > 0. Hence,

This relation implies that there exists a constant o*, 0 < a* <

such that the inequality (19) is satisfied for any k if o* < ay <

2841 — @il
—

1
(21) x|l = a,—k||$k+1 — x| < e

0, %k — oo.
From (161) and (21) we get

(22) IVe(zi)ll = lArpill < Mullpell — 0, & — oo.

Since the function ¢ is stricly convex and {x1} C L, where L is a copmact convex
set, applying (22) we have that the sequence {z;} converges te a unique optimal
solution z* to the problem (1).

Now we shall show that a; = 1 for sufficiently large k. The relations (18) and
(21) imply the following:

d((th(:rk),pk» > d1my
llpx 3 = lpx?

— 00 k — co.

From this relation and the definition of @ it follows that, for sufficiently large k,
o = 1.

Furtheon, since the step-size a; must satisfy the condition (12), by the assuptions
of Theorem we have

1 (Ve(en)p) 1 (H(E)pe,pe)
(23) ar d((V(,o(mk),pk)) 2 d((th(.’L‘k),pk))
1 1 (H(&)pe, i)

= by 26 (Voler),pe) = O

-

&k S: i + O (zp1 — 2p), O € (0, 1).
<H(5k)Pk=Pk> — ([H(Ek)_H(xk)]Pk)Pk> % <H(-’Jk)29kapk)
(Veo(er), pi) (Avpr, pr) (Arpr, pr)

(H (& )pr, o) 1
(VSD(M),PL) )

by (15),(21) and uniform continuity of H on L, if & — oo then
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Consequently, by (23), for sufficiently large k we obtain:

A (Velze), pr) 1 (H(Ex)pr, i)
ar d((Ve(ze),pe))  2d((Vel(ae),pe)) =

1
i B
= by 28, <
. . N - ; 26,
It is easy to show that the last inequality is satisfied if §; < 6y < ———,
1 -+ 26(51

0(61<_—212,ak=1.
It means that for sufficiently large k the inequality (9) i also satisfied for a; = 1.
Now we can estimate the rate of convergence. We have:

”1:;,-4.1 = :L’knz — <.’L‘k+1 -z, T4l — 1:"‘): (.23,@ -z - AEIVQCJ(:B,L-),J:,L-+1 = ..L*)
By the Mean Value Theorem we obtain:
(A7 Ve(er), erer —2*)= (A7 [Ve(zr) — V(")) i1 — 2" )=

(A H(me)(en — %), zp41 — 2°), Mk = 2p + vi(oe — 27), 00 € (0,1).

The last two inequalities imply

lexsr = 2|1 = ((I — A7 H(m) (@ — %), (2140 — 27))=
= (A7 (Ak = He)) ok — 27), (zra1 — 27))<
< AT AR = B (e)llller — 2 [lller4r — 27| <

1 ] ]
= EH(AL: — H)lller = 2*||||25e2 — =*]|-

1
Hence, ||zx+1 — z*|| < 1ellzr — 2*]|, where 13 = E”Ak — H ().
|

By Lemma 1 and uniform continuity of I on L it follows that

A — H(m)l| < || A — H (o)l + [1H(z2) — Hne)ll = 0k — o0

1 .
Consequently, v, = ;1-;—”44; — Hm)|l — 0, k — oo.
1
The last relation implies that the sequence {z} converges to a unique optimal
solution z* superlinearly.
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