Filomat 30:5 (2016), 1135-1142
DOI 10.2298/FIL1605135C

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

re/ 8
U o
Ut @a\di‘

&
0 W
Zpppor
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Abstract. The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition
the edges of G. In this paper, it is proved that for a planar graph G, la(G)=[(A(G)/2)]if A(G) > 7 and G has
no 5-cycles with two chords.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number x, [x] is the least integer
not less than x and [x] is the largest integer not larger than x. Let G be a graph. We use V(G) and E(G) to
denote the vertex set and edge set, respectively. If uv € E(G), then u is said to be a neighbor of v, and N¢(v) is
the set of neighbors of v. The degree d(v) of a vertex v is [Ng(v)|, 6(G) is the minimum degree of G and A(G) is
the maximum degree of G. A k-, k*- or k™-vertex is a vertex of degree k, at least k, or at most k, respectively.
A k-cycle is a cycle of length k. Two cycles are said to be adjacent (or intersecting) if they have at least one
common edge (or vertex, respectively). Given a cycle C of length k(k > 4) in G, an edge xy € E(G)\E(C) is
called a chord of C if x, y € V(C). Such a cycle C is also called a chordal-k-cycle.

If G is a planar graph, then we always assume that G has been embedded in the plane. Let G be a planar
graph and F(G) be the face set of G. For f € F(G), the degree of f, denoted by d(f), is the number of edges
incident with it, where each cut-edge is counted twice. A k-, k*- or k™-face is a face of degree k, at least k,
or at most k, respectively. Let n;(v) denote the number of i-vertices of G adjacent to the vertex v, fi(v) the
number of i-faces of G incident with v. All undefined notations and definitions follow that of Bondy and
Murty [3].

A linear forest is a graph in which each component is a path. A map ¢ form E(G) to {1,2,--- ,t} is called
a t-linear coloring if the induced subgraph of edges having the same color « is a linear forest for 1 < a < t.
The linear arboricity la(G) of a graph G defined by Harary [10] is the minimum number ¢ for which G has
a t-linear coloring. Akiyama et al.[1] conjectured that la(G) = [%'I for any simple regular graph G. The
conjecture is equivalent to the following conjecture.

Conjecture A. For any graph G, [@] <la(G) < [%].
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The linear arboricity has been determined for complete bipartite graphs [1], complete regular multi-
partite graphs [20], Halin graphs [16], series-parallel graphs [18] and regular graphs with A = 3,4[2] and
5,6,8[9]. For planar graphs, more results are obtained. Conjecture A has already been proved to be true for
all planar graphs (see [17] and [21]). Wu [17] proved that for a planar graph G with girth g and maximum
degree A, Ia(G) = [@'I if A(G) 213, 0or A(G) >7and g >4, or A(G) >5and g > 5, A(G) >3 and g > 6.
Recently, M. Cygan et al. [8] proved that if G is a planar graph with A > 9, then [a(G) = [47, and then they
posed the following conjecture.

Conjecture B. For any planar graph G of maximum degree A > 5, 1a(G) = [4.

There are more partial results to support the conjecture. The linear arboricity of a planar graph G is
I'%'I if it satisfies one of the following conditions: (1) A(G) > 7 and G contains no chordal i-cycles for some
i€{4,56,7}([5 6,13]); (2) A > 7 and for each vertex v € V(G), there exist two integers iy, j, € {3,4,5,6,7,8}
such that any two i,, j,-cycles incident with v are not adjacent ([7, 15]); (3) A > 5 and G contains no 4-cycles
([22]); (4) A > 5 and G has no intersecting 4-cycles and intersecting 5-cycles ([4]); (5) A > 5 and G has no
5-, 6-cycles with chords ([5]); (6) A > 5 and any 4-cycle is not adjacent to an i-cycle for any i € {3,4,5} or G
has no intersecting 4-cycles and intersecting i-cycles for either i = 3 or i = 6 ([11]); (7) A > 5 and any two
4-cycles are not adjacent, and any 3-cycle is not adjacent to a 5-cycle ([14]).

In the paper, we will prove that if G is a planar graph with A(G) > 7 and any 5-cycle contains at most

one chord, then la(G) = [@’I. It generalizes some above results.

2. Main Result and its Proof

First, we give some more definitions. Given a t-linear coloring ¢ and v € V(G), we denote by Cfp(v) the set
of colors appear i times at v, where i = 0,1, 2. Then |C}(v)] + |Cj,(v)] +|C2,(v)| = t and d(v) = |Cf,(0)] +2|C5, (V).
For two adjacent edges uv and uw, we denote by uv = uw to exchange the colors of uv and uw, by uv — ¢
to color uv with a color c. If i € C(lp(v), we denote by (v, i) the edge colored with i. For two vertices u and v,
we use (u,1) ~ (v,7) to denote that there is a monochromatic path of color i between u and v. For a vertex v
and an edge xy of G, xy ~ (v,i) denote that there exists a monochromatic path of color i between x and v
passing y. For two different edges x1y1 and x,1, of G, we use x1y1 ~ x21, to denote more accurately that
there is a monochromatic path from x; to y, passing through the edges x;y; and x,1, in G (that is, y; and
X are internal vertices in the path). We use + to denote that such monochromatic path does not exist.

Now we begin to give the main result of the paper and its proof.

Theorem 2.1. Let G be a planar graph with A(G) > 7. If any 5-cycle contains at most one chord, then la(G) = [@'l.

Proof. Since all planar graphs G with A(G) > 9 have been proved in [8] to be [#]—linear colorable, it
suffices to prove the following result.

(A) Any planar graph G of maximum degree at most 8 has an 4-linear coloring using colors 1,2,3,4 if G contains
no 5-cycles with two chords.

Let G = (V, E) be a minimal counterexample to (A). First, we show some known claims for G.

Claim 2.2. Let uv € E(G) and G — uv has an 4-linear coloring ¢. Let Cy(u,v) = Cﬁ,(u) U Cé(v) U (C}P(u) N C}p(v)).
Then

(1) 1Cp(u,v)l =4,
(2) If there is a color i such that i € Cg,(u) N Cy,(v) then (u,i) ~ (v,1).

Proof. (1) Suppose that |Cy,(u,v)| < 4, We may extend ¢ to an 4-linear coloring of G by setting ¢(uv) €
{1,2,3,4} \ Cy(u,v), a contradiction.
(2) If (u, 1) * (v,1), we may extend ¢ to an 4-linear coloring of G by setting ¢ (1, v) = i, a contradiction. [
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By Claim 2.2, we have

(@) 6(G) > 2,

(b) for any edge uv € E(G), dg(u) + dg(v) > 10,

(c) any two 4™ -vertices are not adjacent,

(c) any 3-face is incident with three 5*-vertices, or at least two 6*-vertices, and
(d) any 7~ -vertex has no neighbors of degree 2.

Claim 2.3. [13] If a 7-vertex u is adjacent to a 3-vertex v such that uv is incident with a 3-cycle, then all neighbors
of u except v are 4*-vertices.

Claim 2.4. [22] Every vertex is adjacent to at most two 2-vertices. Moreover, suppose that a vertex v is adjacent to
two 2-vertices x,y. Let x’,y’ be the other neighbors of x, y, respectively. Then x'v,y’v & E(G).

Claim 2.5. [5, 11] If a vertex u is adjacent to two 2-vertices v, w and incident with a 3-face uxyu, then d(x) > 4 and
d(y) = 4.

Claim 2.6. [5, 13] If a vertex u is adjacent to a 2-vertex v and incident with two adjacent 3-cycles wwxu,uwyu, then
d(w) = 4 and max{d(y), d(x)} > 4.

Claim 2.7. [8] If there are two adjacent 3-face uvwu and uvxu such that d(w) = 2, then d(x) > 4.
By Claim 2.7, we have the following corollary.

Corollary 2.8. If a 3-face uxvu is adjacent to a 4-face uxvyu such that d(x) = 2, then d(y) > 4.

Claim 2.9. [13] If G has a 3-face wowu such that d(u) + d(v) = 10, then d(w) = 8.

Claim 2.10. G has no configurations depicted in Figure 1.

Figure 1.

Proof. Suppose that G has a configuration as depicted in Figure 1(a). By the minimality of G, G' = G — uy
has a 4-linear coloring ¢. Without loss of generality, assume @(vy) = 1. Then 1 € C&,(u) and (u,1) ~ vy
by Claim 2.2. If ¢(xu) # 1, then ¢@(xv) # 1, and then xu — 1 and uy — @(xu). Otherwise, we must have
@(xv) = p(xu) = 1, and p(uw) # 1, p(uz) # 1, p(vw) # 1. If 1 € C(w) U Cy,(w), then wu — 1 and uy — @(wu).
Otherwise 1 € Cé(w), that is, p(wz) = 1. We recolor wz and xu with ¢(uz), and then uz — 1, vy = vw, and
uy — 1. Hence we can obtain a 4-linear coloring of G, a contradiction.

Suppose that G has a configuration as depicted in Figure 1(b). By the minimality of G, G' = G — uy has
a 4-linear coloring ¢. Without loss of generality, assume @(vy) = 1. By the same argument as above, we
have p(xv) = p(xu) =1land 1 € Cé(w). Suppose that p(wt) = @(ws) = 1. If p(ut) = p(zw) and ut ~ zw, then
us = ws, uy — @(us). Otherwise, ut = wt, uy — @(ut). Suppose that p(wt) = 1 and @(ws) # 1 (It is similar
to settle the case p(wt) # 1 and @(ws) = 1). Then @(wz) = 1. First, wu — 1,ut — 1, wt — @(ut). Then, if
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@(ut) = p(sw) and ut ~ sw, then us = ws. Finally, ux — @(wu) and uy — @(ut). Hence, we can obtain a
4-linear coloring of G, a contradiction.

Suppose that G has a configuration as depicted in Figure 1(c). By the minimality of G, there exists
a 4-linear coloring ¢ of G — vvs with colors 1,2,3,4. We also show how to extend ¢ to G and obtain a
contradiction with the minimality. The only non-colored edge is vvs. Let C}p(v) = {a}.
Case 1. Pp(v,v3) = P(v3x). Without loss of generality, assume that ¢p(v,v3) = 1.

Then a = 1 for otherwise we can color vvz with a directly. If (v,1) » v,v3, then Pp(vry) # 1, V20 = VU3
and vv3 — ¢(vr,), a contradiction. So

(v,1) ~ vp0s. *)

Subcase 1.1. ¢p(vv;) = 1.

Then vy ~ vv3 by (*). If p(v1y) = 1, then v,0 = vv3, V01 = P(vv2) and vvs — 1. Otherwise, P(v1v2) = 1.
If ¢(v1v2) = 1 and vv, ~ yovq, then v,v = VU3, Vo1 — G(vvy) and vo; — 1. Otherwise, v,v1 = vV and
003 — (]5("()'02).

Subcase 1.2. ¢(vv;) = 1.

Then ¢(v1y) = 1 and v1y ~ v,v for otherwise we can recolor v1v with 1 and color vus with ¢(voy). If
1le Cg(v4) U C(}b(m), then vvy — 1 and vv3 — P(vv,). Otherwise, Pp(v474) = P(v4x) = 1. Thus vvs = vsv4 and
vv3 — G(VUs).

Subcase 1.3. 1 ¢ {¢p(vv1), Pp(vv2)).

If p(v1v;2) = 1, then (v, 1) ~ v10; by (*) and then v,v; = vv and vv3 — G(vvy). Otherwise Pp(v1v2) = b # 1.
By the same argument, we have 1 € Cé (v4), p(n1y) = 1 and (v,1) ~ v1y. It follows that Pp(v4v5) = 1 and
¢(vus) # 1. First, vus = v5v4 and vv; — ¢(vus). Then if p(vvs) = P(xvy) and vus ~ xv4, then xvy = xv3.
Case 2. P(v,v3) # P(v3x). Without loss of generality, assume that ¢(v,v3) = 1 and @(vsx) = 2.

Then a € {1,2} and (v, a) ~ (v3, a), for otherwise we directly color vu; with a.

Subcase 2.1. a = 1.

Then (v,1) ~ v,v3.

Subcase 2.1.1. ¢(vvy) = 1, that is, (v,1) ~ vo;.
Subcase 2.1.1.1. 1 € Cgb(v4) U Cé)(m).

If (vvy) = 2 and v4v ~ xv3, then P(xvs) # 2 and then voy — 1, vv3 — P(vvy) and xv3 = xv4. Otherwise,
vy — 1 and vz — P(voy).

Subcase 2.1.1.2. 1 € Cé(m). Then ¢(xvs) = P(vavs) = 1.

Suppose that ¢p(vv;) = ¢ # 2. If ¢p(v1y) = ¢ and 0 ~ yvq, then ¢(v1v;) = 1 and we do vv, ~ v1v; and
vvsz — ¢. Otherwise, vv, ~ vv1, vov3 — ¢ and voz — 1.

Suppose that ¢(vvr) = P(v1v2) = 2. If 120 * xv3, then 1,0 = V03, Vo1 — 2 and voz — 1. Otherwise,
¢(vvs) ¢ {1,2} and then v,0 = 0,03, V01 — G(vvy), Vo4 — 2 and Vo3 — 1.

Suppose that ¢(vvy) = 2 and P(v1v2) = ¢ # 2. If ¢ > 2, then Pp(v1y) = 1, and vv, = vy, V1V, — 2, V03 = ¢
and vvz — 1. Otherwise, ¢(v1v2) = 1. If ¢p(vvs) = 2 and vv, ~ xv3, then vsv, = sV, VU3 — P(vr4) and
vvy — 2. Otherwise, vsv4 = v5v and vz — @(vvs).

Subcase 2.1.2. ¢(vvp) = 1.

Then ¢(v1vp) # 1. If p(vv1) # 2, or Pp(vv;) = 2 but vo; + xv3, then vo; — 1 and vo3 — P(vv;). Otherwise,
ifle Cé(u;), then vv; — 1, vvy — 2 and vvz — P(vv,). Otherwise, vvy, — 1 and vvz — vv,.

Subcase 2.1.3. 1 ¢ {p(vv1), P(v2)}.

Suppose that ¢(vivp) # 1. If ¢p(vv1) = 2 and v1v ~ xv3, then P(v177) > 2 and v1v, = VU3, VU3 — 1.
Otherwise, vv; — 1 and vuz — ¢(voy).

Suppose that ¢p(v1v7) = 1. Since (v, 1) ~ v2v3, P(v1y) = 1. If p(vvy) # 2, then vv, ~ v1v; and Vo3 — P(vVy).
If (vvy) = 2and p(vvr) # 2, thenvo, ~ V102, VU1 — P(vv2) and vuz — P(vw1). Suppose that p(vor) = P(vv,) =
2. We also have vv, ~ xv3 for otherwise vvy, ~ v1v; and voz — ¢(vvo). Thus, if 1 € C%(M) U C}p(m), then
vvy — 1 and vov; — ¢(vvy). Otherwise, if P(vvy) = P(v4v5) = 1, then P(vax) > 2 and Vv, ~ V102, VU3 — (V)
and xv3 = xvy. If p(vvs) = P(xvs) = 1, then vvy ~ V203, VU3 — P(VV,) and xv3 = xv4. If P(V504) = P(xvy) =1,
then vv, ~ V102, VU3 = P(vvy) and voy, — 2.

Subcase 2.2. a = 2.
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Then (v,2) ~ xvs. Suppose that 2 € Cg)(vl) U C}P(Ul). Then ¢(vvq) # 2 and we can recolor vv; with 2. If
¢(vv1) = 1, then we come back to Subcase 2.1. Otherwise, vv3 — ¢(vv;). Suppose that 1 € Cg)(m) U Cé)(v;;).

Then ¢(vvy) # 2 and we can recolor vvy with 2. If ¢(vvs) = 1, then we go back to Subcase 2.1. Otherwise,
vv3 — @(vvs). So in the following, we assume that 2 € Cé(vl) N Cé(v;;).
Subcase 2.2.1. ¢(vvy) = P(xvy) = 2.

Then ¢(v,0v1) = ¢(v1y) = 2. It follows that v,v1 ~ V03, Vo1 — 2 and vz — P(voy).
Subcase 2.2.2. ¢(vvy) = P(v4v5) = 2.

Then ¢(v,v1) = ¢(v1y) = 2. Suppose that ¢(vvs) = 1. If ¢(xvy) = 1 and vvs ~ xv4, then vvs = V405,
xvg = xv3, vv4 — 1 and vv, — 2. Otherwise, vvs = v4v5 and we go back to Subcase 2.1.

Suppose that ¢p(vvs) = ¢ > 2. If Pp(xvy) = ¢ and vvs ~ xvy, then vvs = v405, xv4 = xv3, VU4 — ¢ and
vvy — 2. Otherwise, vvs = v4v5 and v — c.
Subcase 2.2.3. ¢(v504) = P(xv4) = 2.
Subcase 2.2.3.1. ¢(vv1) = P(v17,) = 2.

Suppose that ¢(vvp) = 1. If ¢(v1y) = 1 and v,0 ~ yvq, then v01 ~ V0, Vo, — 1 and Vo3 — P(vvs).
Otherwise, v,v; ~ v,v and vvz — 1.

Suppose that ¢p(vr;) = ¢ > 2. If ¢(v1y) = ¢, then v,01 = 1, Vv, — 2, 1,03 — ¢ and vz — c. Otherwise,
1,01 ~ U and vuz — c.
Subcase 2.2.3.2. Pp(vv1) = P(v1Yy) = 2.

First, vvs = 0405, V01 — P(vvs) and vus — 2. Then, if P(v1v2) = P(vs) # 1, then v1v2 = vy03.
Subcase 2.2.3.3. ¢p(v1v2) = p(yv1) = 2.

Suppose that v1v, * xv3. If $(vv1) = 1 and v1v ~ V03, then v,v1 = vov3 and vo; = voy. Otherwise,
001 = vov3. Thus, we go back to Subcase 2.1.

Suppose that v1v, ~ xv3, that is, there is a monochromatic path v--- yv1v; - - - vsv4x v3. It follows that
2 ¢ {p(vr1), p(v02), P(vvs), P(vus)). If P(vv1) = P(vvy) = 1, then 1,01 = 10, voy — 1 and Vo3 — P(voy).
Otherwise, v,01 = vov and vuz — P(vvy). O

Claim 2.11. If a planar graph G contains no 5-cycles with two chords and 6(G) > 2, then the following results hold.

(a) Every 4" -vertex v is incident with at most L@J 3-faces;

() If a vertex v is incident with three continuous faces fi,f> and f3 such that d(f1) = 3, d(f,) = 4 and f1, f> have
a common 2-vertex, then d(f3) > 4;

(c) If a vertex v is incident with four continuous faces f1,f> ,f3 and fi such that d(f1) = d(fs) = 3, d(f2) = 4 and
a 2-vertex is incident with f, and f3, then d(fy) > 4;

(d) If a face is adjacent to two nonadjacent 3-face, then the face must be a 4*-face.

The proof of the claim is obvious, we omit here. By the Euler’s formula |V| — |E| + |F| = 2, we have

D (2d@) ~6) + ) (@(f) ~6) = ~6(V|~ |E| + |Fl) = ~12 <. M

veV feF

We define ch to be the initial charge. Let ch(v) = 2d(v) — 6 for each v € V(G) and ch(f) = d(f) — 6 for
each f € F(G). In the following, we will reassign a new charge denoted by ch'(x) to each x € V(G) U F(G)
according to the discharging rules. Since our rules only move charges around, and do not affect the sum,
we have

ol (x) = Z ch(x) = —12 < 0. )
xeV(G)UF(G) xeV(G)UF(G)

In the following, we will show that c/'(x) > 0 for x € V(G) U F(G), a contradiction to (2), completing the
proof.

For a face f = (v1,v2,- -, v;) of G, we use (d(v1),d(vy), - -+ ,d(v)) — (c1,¢2,- -+, ¢¢) to denote that vertex v;
sends f the amount of charge c; for any i € {1,2,--- , t}. Now, let us introduce the needed discharging rules
as follows.
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R1. Every 8*-vertex sends 1 to each of its adjacent 2-vertices.

R2. Let f be a 3-face. Then

33

7,7 ==
(3/ 7 )_) (0/ 2/ 2)/

155

+ 7+ - - =z
(4,67 > (5, 3.7)

(5%,5%,5") —» (1,1,1).

R3. Let f be a 4-face. Then
(37,7%,37,77) - (0,1,0,1),

—~~
N
NG
NS
N
IS
N
S
T
N
—~~
N =
N[ =
N| =

R4. Let f be a 5-face. Then
1

’ 0/ a7
3)

(3_/ 7+/4+/ 4+/ 7+) - (O’

<

[ e
~

—_ =

1
+ g+ A4t a4t o4t
(47,47,47,47,47) > (4, T 4).

Now we begin to check ch'(x) > 0 for all x € V(G) U F(G). Let f € F. If d(f) > 6, then ch'(f) =
d(f) —6 = 0. If d(f) = 5, then ch'(f) = ch(f) + max{% X 3,% X 4,% x 5} = 0 by R4. If d(f) = 4, then
ch’(f) = ch(f) + max{1x2, % + % X2, % x4} = 0. Ifd(f) = 3, thench’(f) = ch(f)+max{% ><2,%+ 2 x2,1x3} =0.

Let v € V. If d(v) = 2, then ch'(v) = ch(v) +2 = 0 by R1. If d(v) = 3, then ch'(v) = ch(v) = 0 by R2-R4.
If d(v) = 4, then it sends every incident face at most 3. So ch'(v) = ch(v) — § X f3(v) — 3 X (4 - f3(v)) = 0
by R2-R4. If d(v) = 5, then f3(v) < 3 by Claim 2.11. So ch'(v) > ch(v) — 1 X f3(v) — 3 X (5 — f3(v)) =
$LO 5 0. If dv) = 6, then f(v) < 4 and ch'(v) > ch(v) — 3 X f5(0) — & X (6 — fo(v)) = 222 > 0.
Suppose d(v) = 7. By Claim 2.11, f3(v) < 4. If v has a 3-neighbor u such that uv is incident with a
3-cycle (note that uv may be incident with two 3-faces), then all neighbors of v except u are 4*-vertices,
and it follows that ch’(v) > ch(v) — (% X2+ g X (f3(v) — 2) + 2 X (7 - f3(v) = %ﬁ(v) > 0. Otherwise,
o (0) = ch(v) = 2 X f5(0) = 1% (7 = f3(0)) = L& > 0,

Suppose d(v) = 8. Then f3(v) < 5. Let v, vy, ..., vg be neighbors of v in a clockwise order, and denote by
fi, f2, ..., fs be faces incident with v such that v; is incident with f;, fit1,7=1,2,...,7 and vg is incident with
fs and f1. By Claim 2.4, we consider the following three cases.

Case 1. ny(v) = 2.

Without loss of generality, assume that v; and v; are 2-vertices(2 < i < 5). By Claim 2.4, f1, f», fi, fis1 are
4*-faces. Note that if some f; is a 3-face, then all vertices incident with f; are 4*-vertices by Claim 2.5, and
it follows that v sends at most % to f;. If f; is a 3-face and f};1 is a 4-face, then fj; is incident with at least
three 4" -vertices, and it follows that it receives at most i from v.

Subcase 1.1. i = 2.

Then f3(v) < 4 since G contains no 5-cycles with two chords. If f3(v) < 4, then ch'(v) > ch(v) — 2 — ?—1 X
£©) =3 X f3(0) = 1% (8—2f3(v)) = 0 by R2-R4. Otherwise, we must have that fi, fs, f7, fs are 3-facesand f; isa
4*-face. If d(f,) = 4, then f3(or f1) is 5*-face or fy(or fg)isa (5%,5%,5%)-face by Claim 2.10, respectively, and
it follows that ch'(v) > ch(v) -2 —max{1X2+3x2+1+2x3,3x3+1+2Xx2+1,3x4+1+2+1x2} =1 >0.
Otherwise, d(f,) > 5, and we have ' (v) > ch(v) —2 - 3 x4 -3 x3-1>0.

Subcase 1.2. i = 3.
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Then f3(v) < 3. So ¢l (v) > ch(v) —2 — 3 X f3(v) — 2 X f3(v) — 1 X (8 — 2f3(v)) = 0 by R2, R3 and R4.
Subcase 1.3. i = 4.
Then f3(v) < 3. So ch'(v) > ch(v) —2 - % X f3(v) — % X f3(v) =1 x (8 —2f3(v)) = 0 by R2, R3 and R4.

Subcase 1.4. i = 5.

Then f3(v) < 4. So ¢l (v) > ch(v) —2 — 2 X f3(v) — 2 X f3(v) — 1 X (8 — 2f3(v)) > 0 by R2, R3 and R4.
Case 2. np(v) = 1. Without loss of generality, assume that v is the 2-vertex.

Suppose that there is an integer i(2 < i < 6) such that f; and f;,; are 3-faces, then f; or fi,; is incident
with three 4"-vertices by Claim 2.6, and f; or f; receive at most % from v, and accordingly, fi1 or fj;1 is a
4*-face incident with at least three 4*-vertices and receive at most % from v.

Subcase 2.1. f; and fg are 4" -faces.

By the hypothesis of the theorem, f3(v) < 4. If f3(v) < 2, then ch’(v) > ch(v) — 1 — % X2-1x6=0.
Suppose that f3(v) = 3. Let f;, f;, fy be three 3-faces, where 1 <i < j <k <8 Ifi+1 < j<k-1,then
there are at least three 4" -faces each of which is incident with at least three 4*-vertices, and it follows that

ch'(v) = ch(v) — 1 - % X3 - % X 3 —1x2 > 0. Otherwise, there is a 3-face received % from v and a 4*-face
received % from v, so ch’(v) > ch(v) — 1 - % X2 - % - % —-1x4=0.

Suppose that f3(v) = 4. Let f;, fj, f, fi be four 3-faces, where2 < i< j<k <[ <7 Ifi+1=jand
k+1=1 thench'(v) > ch(v) -1 - (3 + 2) x2 - max{l X3+ 1,3 X2+ 1 x 2} = 0. Otherwise, there is a pair
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of adjacent 3-faces in {f;, f;, fx, fi} and there are at least three 4*-faces incident with at least three 4*-vertices,
and it follows that c¢h’(v) > ch(v) - 1 — % X3 - g - % x3-1=0.

Subcase 2.2. fi or fg is a 3-face. Without loss of generality, assume that d(f1) = 3.

Then d(fg) > 4 and f3(v) < 5.

Subcase 2.2.1. f3(v) < 2.
Then c’(v) > ch(v) -1 -2 x2-1x6=0.
Subcase 2.2.2. f3(v) = 3.

Let fi, fi, fj be three 3-faces, where 1 <i < j < 8. If i = 2, that is, f; and f, are two adjacent 3-faces, then
d(v2) > 4 by Claim 2.7, and it follows that v sends at most % to f,, at most % to f3, and we have ch’(v) >
ch(v)-1-3x2-3-3-1x4 = 0. Otherwise ch’(v) > ch(v)—1-max{2x3+3x3+2x1,3X2+32+3x2+1x2} > 0.
Subcase 2.2.3. f3(v) = 4.

Let f1, fi, fj, fx be three 3-faces, where 1 < i < j < k < 8. Suppose that i = 2, that is, f; and f, are two
adjacent 3-faces. Then d(v;) > 4 by Claim 2.7, and it follows that v sends at most % to f,, at most % to f3.
If f;, fi are not adjacent, then ch’(v) > ch(v) =1 -3 x3 -2 — 3 —max{3 +1x2,2 x2+1} = 0. Otherwise
ch'(v) > ch(v) -1 -3 x2—-3x2-max{3 x2+2x1,2x3+1}=0.

Suppose thati > 2. If i = 3,j = 5,k = 7, then ch’(v) > ch(v)—1—3 x4—max{3 x4, 3 x2+3+1, 1 +1x2} = 0.
Otherwise, there are two adjacent 3-faces in {f;, f;, fx}, and ch’(v) > ch(v) =1 - % X3 - % - max{% X3+1, % +
1+1x2}=0.

Subcase 2.2.4. f3(v) = 5.

Then we must have d(f;) = 3and d(fg) > 5. Suppose thatd(f,) > 4. Then f3, fi, f¢, f7 are 3-faces. By Claim
2.6, max{d(v,),d(vy)} = 4 and max{d(vs), d(vy)} = 4. So ch’ (v) = ch(v)—1- % X3— % X2— % —max{i X2, % +1} > 0.

Suppose that d(f,) = 3, that is, f; and f, are two adjacent 3-faces. Then d(v;) > 4 by Claim 2.7, and
d(fs) > 4. We also have ch’(v) > ch(v) =1 -3 x3 -2 x2 -1 —max{3 x2,1 +1} > 0.

Case 3. n,(v) = 0.

Then f3(v) < 5. If f3(v) < 4, then ch’(v) = ch(v) — % x4 —1x4 = 0. Otherwise, assume that fi, f, fs, f, f7
are 3-faces. If there is a 5"-face in {f3, fs, fs}, then ch’(v) > ch(v) — % X5 - % —1x2 > 0. Otherwise,
d(f3) = d(fs) = d(fs) = 4. By Claim 2.10, there are at least two 4-faces in {f3, fs, fs} each of which is incident
with at least three 4*-vertices. So ch’(v) > ch(v) — % X4 - % - % x2-1>0.

Hence the proof is completed. [
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