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Abstract. A short account on Gaussian quadrature rules for integrals with logarithmic singularity, as well
as some new results for weighted Gaussian quadrature formulas with respect to generalized Gegenbauer
weight x 7→ |x|γ(1 − x2)α, α, γ > −1, on (−1, 1), which are appropriated for functions with and without
logarithmic singularities, are considered. Methods for constructing such kind of quadrature formulas and
some numerical examples are included.

1. Introduction

In this paper we give a short account on Gaussian quadrature rules for integrals with logarithmic
singularity, as well as some new results for weighted quadrature rules of Gaussian type with respect to
generalized Gegenbauer weight on (−1, 1) suited for functions with and without logarithmic singularities.
Some of these results have been recently presented during author’s plenary lecture at the 28th International
Conference of The Jangjeon Mathematical Society (May 15–19, 2015, Akdeniz University Antalya, Turkey).

The paper is organized as follows. A history of Gaussian quadrature formulas and basic connection
to orthogonal polynomials are presented in Section 2. Gaussian quadratures for non-polynomial systems
are introduced in Section 3. Generalized weighted Gaussian formulae for functions with a logarithmic
singularity are considered in Section 4. In particular, quadrature rules of Gaussian type with respect
to the generalized Gegenbauer weight are presented. Such rules are able to integrate functions with a
sufficient accuracy, regardless of whether they are smooth, or contain a logarithmic singularity. Methods of
construction such kind of quadratures, as well as some numerical examples, are given in Sections 5 and 6.

2. Gaussian quadratures and orthogonal polynomials

One of the most significant event of the 19th century in the field of numerical integration and perhaps
in all of numerical analysis was the discovery of Gaussian quadratures in 1814. While interpolatory
Newton-Cotes formula for numerical integration from 1676,

I( f ) =

∫ b

a
f (x) dx ≈ Qn( f ) =

n∑
k=1

Ak f (xk), (1)
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Yilmaz Simsek / Filomat 30:4 (2016), 1111–1126 1112

with fixed nodes (usually selected equidistantly on [a, b]), is exact only for algebraic polynomials of degree
at most n − 1, the corresponding Gaussain formula is exact for polynomials of degree at most 2n − 1.
This dramatically increasing of degree of exactness has enabled by a free choice of nodes xk, k = 1, . . . ,n.
Starting only from the previous work of Newton and Cotes and using his own result on continued fractions
associated with hypergeometric series, Gauss proved this result. It is interesting to mention that in the
case [a, b] = [0, 1], Gauss [5] determined numerical values of the nodes xk and the weight coefficients Ak,
k = 1, . . . ,n, for all n ≤ 7, with almost 16 significant decimal digits. An alternative (and elegant) derivation
of Gaussian formulas was provided by Jacobi [14], using theory of orthogonality. His result can be stated
in the form: Given a positive integer m (≤ n), the quadrature rule Qn( f ) in (1) has an algebraic degree of exactness
d = n − 1 + m if and only if the following conditions are satisfied:

1◦ Formula Qn( f ) is interpolatory;
2◦ The node polynomial qn(x) = (x − x1)(x − x2) · · · (x − xn) satisfies I(qnp) = 0 for each polynomial of degree at

most m − 1.

LetPn be the set of all algebraic polynomials of degree at most n, P be the set of all algebraic polynomials,

and (p, q) be an inner product defined on (a, b) = (−1, 1) by (p, q) =
∫ 1

−1 p(x)q(x) dx (p, q ∈ P).
According to the previous Jacobi result, an n-point quadrature formula (1) has the maximal degree of

exactness 2n − 1, i.e., m = n is optimal, because the higher m (> n) is impossible. Indeed, the condition 2◦

for m = n + 1 requires the orthogonality I(qnp) = (qn, p) = 0 for all p ∈ Pn, which is impossible when p = qn,
because I(q2

n) = (qn, qn) > 0.
Thus, in the case m = n, the orthogonality condition 2◦ shows that the node polynomial qn must be

(monic) orthogonal polynomial on (−1, 1), and therefore the nodes xk must be zeros of the polynomial qn(x),
which is exactly the monic Legendre polynomial of degree n.

After further contributions by Mehler, Radau, Heine, Posse, etc., Christoffel generalized the previous

Gauss-Jacobi theory to arbitrary weighted integrals I( f ; w) =
∫ b

a f (x)w(x) dx, and Stieltjes to integrals with
respect to the positive measures dµ(x) on the real line with finite or unbounded support, I( f ; dµ) =∫
R

f (x) dµ(x). A nice survey of Gauss-Christoffel quadrature formulae was given by Gautschi [6].
In this paper we deal with Gauss-Christoffel quadratures∫ b

a
f (x)w(x) dx =

n∑
k=1

Ak f (xk) + Rn(w; f ), (2)

with respect to the weight function w : (a, b) → R+, for which all moments µk =
∫ b

a xkw(x) dx exist and are
finite, and µ0 > 0. The quadrature sum will be denoted By Qn(w; f ) and Rn(w; f ) we denote the quadrature
sum and the corresponding remainder term, respectively. Under previous conditions for moments, for
each n ∈N, there exists the n-point Gauss-Christoffel quadrature formula (2) which is exact for all algebraic
polynomials of degree ≤ 2n − 1, i.e., Rn(w; f ) = 0 for each f ∈ P2n−1.

Thus, the Gauss-Christoffel quadrature formula can be characterized as an interpolatory formula for
which its node polynomial qn(t) =

∏n
k=1(x− xk) is orthogonal to Pn−1 with respect to the inner product defined

by

(p, q) =

∫ b

a
p(x)q(x)w(x) dx (p, q ∈ P). (3)

Therefore, orthogonal polynomials play an important role in the analysis and construction of such quadra-
ture formulas of the maximal algebraic degree of exactness.

The monic polynomialsπν( · ) = πν(w; · ), ν = 0, 1, . . ., orthogonal with respect to (3) satisfy the three-term
recurrence relation (cf. [19, p. 97])

πν+1(x) = (x − αν)πν(x) − βνπν−1(x), ν = 0, 1, . . . , (4)
π0(x) = 1, π−1(x) = 0,
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with recurrence coefficients αν = αν(w) and βν = βν(w) > 0, and β0 = µ0 =
∫ 1

−1 w(x) dx (by definition).
For numerical construction of quadrature rules (2) of the maximal algebraic degree of exactness, there

are several stable algorithms. The most popular of them is one due to Golub and Welsch [12], which is based
on determining the eigenvalues and the first components of the corresponding normalized eigenvectors of
the following symmetric tridiagonal Jacobi matrix

Jn(w) =



α0
√
β1 O√

β1 α1
√
β2√

β2 α2
. . .

. . .
. . .

√
βn−1

O
√
βn−1 αn−1


,

where αν and βν, ν = 0, 1, . . . ,n−1, are the coefficients in the three-term recurrence relation (4) for the monic
orthogonal polynomials πν(w; · ). The nodes xk, k = 1, . . . ,n, in the weighted Gauss-Christoffel quadrature
formula (2) are the eigenvalues of the Jacobi matrix Jn(w), and the weights Ak are given by

Ak = β0v2
k,1, k = 1, . . . ,n,

where β0 = µ0 and vk,1 is the first component of the normalized eigenvector vk corresponding to the
eigenvalue xk,

Jn(w)vk = xkvk, vT
k vk = 1, k = 1, . . . ,n. (5)

Thus, if recursive coefficients in the three-term recurrence relation (4) are known explicitly, as for
example, in the case of very classical orthogonal polynomials, the construction of quadratures with the
maximal algebraic degree of exactness (Gaussian quadratures in the polynomial case) can be realized very
easy for arbitrary n ∈ N. Orthogonal polynomials for which the recursion coefficients are not known we
call strongly non–classical polynomials. In such cases we need a stable numerical construction of recursive
coefficients based on the Gautschi constructive theory of orthogonal polynomials on the real line [7], [8], [9]
(see also [10], [19], [21]).

Recent progress in symbolic computation and variable-precision arithmetic now makes it possible
to generate the recurrence coefficients αk and βk directly by using the original Chebyshev method of
moments, but in a sufficiently high precision arithmetic. Such an approach enables us to overcome the
numerical instability. Respectively symbolic/variable-precision software for orthogonal polynomials is
available: Gautschi’s package SOPQ in Matlab and our Mathematica package OrthogonalPolynomials
(see [4], [23], [21]), which is downloadable from the web site http://www.mi.sanu.ac.rs/˜gvm/. A survey
on quadrature processes and new applications has been recently given in [20].

Unfortunately, such elegant tools do not exist for non-polynomial basis systems of functions and related
Gaussian quadratures, which will be considered in the following section.

3. Gaussian quadratures for non-polynomial systems

Gauss’s method can be extended in a natural way to non-polynomial functions, taking a system of
linearly independent functions

{ψ1(x), ψ2(x), . . .} (x ∈ [a, b]), (6)

usually chosen to be complete in some suitable space of functions.
If w(x) is a given nonnegative weight function on [a, b] and the quadrature rule∫ b

a
f (x)w(x) dx =

n∑
k=1

Ak f (xk) + Rn(w; f ) (7)
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is such that it integrates exactly the first 2n functions in (6), then the rule (7) is called Gaussian with respect
to the system (6). The existence and uniqueness of such a quadrature rule of Gaussian type for a non-
polynomial system (6) is always guaranteed if the first 2n functions of this system constitute a Chebyshev
system on [a, b]. In that case, all the weights A1, . . . ,An in (7) are positive. In terms of moment spaces, the
Gaussian rule corresponds to the unique lower principal representation of the measure dµ(x) = w(x) dx (see
Karlin and Studden [15]).

A further refinement of the results of existence and uniqueness of Gaussian quadrature rules for non-
polynomial systems (in the other words, for the so-called generalized Gaussian quadrature rules) was given
by Ma, Rokhlin, and Wandzura [18]. Suppose a system of functions ψk, k = 1, . . . , 2n, which are continuous
on (a, b], and that there exists a function r integrable and continuous on (a, b], such that |ψk/r| < +∞ as
x → a+. If ψk/r, k = 1, . . . , 2n, constitute the Chebyshev system on [a, b], then the generalized Gaussian
quadrature formula (7) exists uniquely. Further, assuming that system of functions ψk, k = 1, . . . , 2n, is
Chebyshev on the interval (a, b] and integrable (w.r.t. to a given weight function w), we have that Gaussian
quadrature rule exists uniquely (see [18]).

The most important systems of functions which satisfy the previous condition are the well known Müntz
systems.

A construction of the generalized Gaussian quadrature formula (7) was considered in [18], taking a
Chebyshev system of functions {ψ1, ψ2, . . . , ψ2n} on [a, b] with the following properties:

(1) ψk ∈ C1[a, b] (k = 1, . . . , 2n);
(2) the determinants

D2n(ψ1, ψ2, . . . , ψ2n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) · · · ψ1(xn) ψ′1(x1) · · · ψ′1(xn)

ψ2(x1) ψ2(xn) ψ′2(x1) ψ′2(xn)

...

ψ2n(x1) ψ2n(xn) ψ′2n(x1) ψ′2n(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, 0 (8)

for any set of n points x1, . . . , xn ∈ [a, b] (xi , x j for i , j).
Such a system will be referred to as an extended Hermite (EH) system.
The procedure given in [18] requires the construction of the functions

ξi(x) =

2n∑
j=1

αi jψ j(x), ηi(x) =

2n∑
j=1

βi jψ j(x) (i = 1, . . . ,n) (9)

such that ξi(xk) = 0,

ξ′i (xk) = δik,

 ηi(xk) = δik,

η′i (xk) = 0,
(10)

for all i = 1, . . . ,n and all k = 1, . . . ,n. The algorithm is ill conditioned (see [18, Remark 6.2]). In order to
obtain the double precision results (REAL*8), the authors performed the computations in extended precision
(Q-arithmetic, i.e., REAL*16) for generating Gaussian quadratures up to order 20, and in Mathematica (120-
digit operations) for generating Gaussian quadratures of higher orders (n ≤ 40).

In [22], Milovanović and Cvetković proposed a quite different numerical algorithm which is numerically
stable and simpler than the previous one. It performs calculations in double precision arithmetic to get
double precision results. Otherwise, the generalized Gaussian quadratures for Müntz systems goes back
to Stieltjes’s paper [29] of 1884. Taking ψk(x) = xλk on [a, b] = [0, 1], where 0 ≤ λ1 < λ2 < · · · , he showed the
existence of Gaussian formulae. In his short note he considered also Gauss–Radau formulae.

The quadrature formulas (7) possess several properties of the classical Gaussian formulae (for poly-
nomial systems), such as positivity of the weights, rapid convergence, etc. They can be applied to the
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wide class of functions, including smooth functions, as well as functions with end-point singularities, such
as those in boundary-contact value problems, integral equations, complex analysis, potential theory, and
several other fields.

4. Generalized weighted Gaussian formulae for functions with a logarithmic singularity

4.1. Quadrature rules for integrals in boundary element method

Quadrature formulas play a very important role in numerical implementation of the boundary element
method (BEM), especially for higher order elements (see [16, Chapters 4 & 5] and [1, Chapter 6]). For
calculating integrals of the corresponding influence coefficients (for off-diagonal elements and diagonal el-
ements), quadratures of Gaussian type are very appropriate. In particular, for sufficiently smooth functions
on a finite interval [a, b], an application of Gauss-Legendre quadrature formula (after a linear transformation
to the standard interval [−1, 1]) provides numerical integration with a satisfactory accuracy. However, for
integrals with a logarithmic singularity the convergence of the corresponding quadrature process is very
slow, so that some weighted quadratures of Gaussian type are recommended, e.g.,∫ 1

0
f (x) log

1
x

dx ≈
n∑

k=1

wL
k f (xL

k ). (11)

In such kind of Gaussian quadratures, the weight functions include these “difficult parts (with singularities)”
of the integrand. Integrals with nearby and strong singularities was recently considered by Tsamasphyros
and Theotokoglou [30].

Regarding the previous fact, it would be very useful to have some kind of quadrature rules suited for
functions with and without logarithmic singularities. In other words, such universal (direct) quadrature
formulae need to be able to integrate functions with a sufficient accuracy, regardless of whether they are
smooth, or contain a logarithmic singularity. This would avoid the separation of a function into singular
and non-singular parts, as well as use two different quadrature formulas.

An approach for constructing such universal quadrature formulae which integrate both kind of func-
tions, smooth and ones with a logarithmic singularity, was considered by Nahlik and Białecki [25]. They
assumed that the integrand behaves as a logarithm near zero, i.e.,

f (x) = C1 log |x| + C2 + C3x + C4x2 + · · · (Ck are constants),

and constructed symmetric interpolatory quadrature formulas of the form∫ 1

−1
f (x) dx =

2m∑
k=1

Ak f (xk) + Rn( f ), (12)

taking zeros of

14(x) =
1
4

√
5
2

(
−2 log |x| + 9x2

− 5
)
, 16(x) =

3

32
√

2

(
12 log |x| + 175x4

− 180x2 + 37
)
,

18(x) =
1

64

√
13
2

(
−20 log |x| + 1078x6

− 1575x4 + 630x2
− 69

)
,

as nodes in (12), for m = 2, 3, and 4, respectively. The functions {1ν}8ν=1 are orthonormal with respect to

the usual inner product ( f , 1) =
∫ 1

−1 f (x)1(x) dx, obtained from
{
log |x|, 1, x, x2, x3, x4, x5, x6

}
by the standard

Gram–Schmidt procedure. These zeros are real, distinct and are symmetricaly distributed in (−1, 1) (see
graphics of functions 14, 16, and 18 in Figure 1), but the obtained quadratures are not of Gaussian type.
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Figure 1: Graphics of orthonormal functions 16 (left) and 18 (right)

Another approach for weakly singular logarithmic integrals, which appear in two-dimensional BEM
problems, was considered by Smith [28]. He discussed some direct Gaussian rules for logarithmic singu-
larities on isoparametric (quadratic and cubic) elements.

Recently, Milovanović, Igić an Turnić [24] have developed an efficient method for constructing a class

of generalized quadrature formulae of Gaussian type on (−1, 1) for integrals
∫ 1

−1 f (x) dx, with logarithmic
singularities. Also, they have presented several special cases for such n-point quadratures, which are exact
on the both of spaces P2n−2`−1[−1, 1] (the space of algebraic polynomials of degree at most 2n − 2` − 1)

and L2`−1[−1, 1] = span
{
xk log |x|

}2`−1

k=0
(the logarithmic space), where 1 ≤ ` ≤ n. The construction of such

quadratures is based on solving systems of nonlinear equations, using orthogonal system of basis functions.
The last provides the well conditioned matrices in the corresponding iterative procedure.

In the sequel we consider (2m)-point symmetric quadrature rules of Gaussian type∫ 1

−1
f (x)|x|γ(1 − x2)α log

1
|x|

dx =

m∑
k=1

AL
k ( f (xL

k ) + f (−xL
k )) + R2m(wL; f ) (13)

and ∫ 1

−1
f (x) |x|γ(1 − x2)α dx =

m∑
k=1

Ak

(
f (xk) + f (−xk)

)
+ R2m(w; f ), (14)

where w(x) = |x|γ(1 − x2)α and wL(x) = |x|γ(1 − x2)α log(1/|x|), α, γ > −1. The first of them will be Gaussian
rule with an algebraic degree of exactness 2(2m) − 1 = 4m − 1, and the second one will be exact for all
functions from the set

AL =
{
1, x, . . . , x2m−1, log |x|, x log |x|, . . . , x2m−1 log |x|

}
, dimAL = 4m. (15)

Otherwise, these symmetric formulas (13) and (14) are true for any odd function.

4.2. Generalized Gegenbauer orthogonal polynomials on (−1, 1)
In the quadrature formulas (13) and (14) we use the generalized Gegenbauer weight function

w(x) = |x|γ(1 − x2)α (α, γ > −1). (16)

The monic polynomials W(α,β)
ν (x), ν = 0, 1, . . ., orthogonal with respect to the weight function (16), where

β = (γ − 1)/2, were introduced by Laščenov [17] (see, also, [2, pp. 155–156] and [19, pp. 147–148]) and they
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can be expressed in terms of the Jacobi polynomials P(α,β)
ν (x), ν = 0, 1, . . ., which are orthogonal on (−1, 1)

with respect to the weight function w(α,β(x) = (1 − x)α(1 + x)β, α, β > −1. Thus, we have

W(α,β)
2k (x) =

k!
(k + α + β + 1)k

P(α,β)
k (2x2

− 1), W(α,β)
2k+1(x) =

k!
(k + α + β + 2)k

xP(α,β+1)
k (2x2

− 1). (17)

We can also see that W(α,β)
2k+1(x) = xW(α,β+1)

2k (x). These orthogonal polynomials satisfy the following three-term
recurrence relation

W(α,β)
ν+1 (x) = xW(α,β)

ν (x) − βνW
(α,β)
ν−1 (x), ν = 0, 1, . . . ,

W(α,β)
−1 (x) = 0, W(α,β)

0 (x) = 1,

with recursive coefficients

β2k =
k(k + α)

(2k + α + β)(2k + α + β + 1)
, β2k−1 =

(k + β)(k + α + β)
(2k + α + β − 1)(2k + α + β)

, k = 1, 2, . . . ,

except when α + β = −1; then β1 = (β + 1)/(α + β + 2). It is convenient to put β0 =
∫ 1

−1 |x|
γ(1 − x2)α dx =

B(α + 1, β + 1), where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function.

4.3. Some basic facts on the quadrature rule (14)
We study the generalized Gaussian quadrature rule (14), which is exact for all functions from AL. The

corresponding orthonormal system of functions{
ψ1(x), ψ2(x), . . . , ψ4m(x)

}
, (18)

can be obtained from (15) by some of orthogonalization processes, for example, by the Gram–Schmidt
procedure, so that

(ψν, ψµ) =

∫ 1

−1
ψν(x)ψµ(x)w(x) dx = 0 (ν , µ), ‖ψν‖

2 = (ψν, ψν) = 1,

where w is the generalized Gegenbauer weight function given by (16).
Notice that the first 2m functions in (18) are algebraic polynomials; in fact, they are orthonormal

generalized Gegenbauer polynomials,

ψk(x) =
W(α,β)

k−1 (x)

‖W(α,β)
k−1 ‖

, k = 1, . . . , 2m.

Also, we note that {ψ2ν−1}
2m
ν=1 are even, and {ψ2ν}

2m
ν=1 are odd functions.

As we mentioned before, the elegant tools (like orthogonal polynomials) do not exist for non-polynomial
basis systems of functions and related Gaussian quadratures. Thus, in construction of such symmetric rules
we need to solve the following system of nonlinear equations

m∑
k=1

Akψ2ν−1(xk) =

∫ 1

0
ψ2ν−1(x)w(x) dx, ν = 1, . . . , 2m. (19)

taking only even basis functions {ψ2ν−1}
2m
ν=1. Since ψ1(x) = 1/

√
β0, where β0 = B(α + 1, β + 1), because of

orthogonality, the right-hand side in (19) reduces to∫ 1

0
ψ2ν−1(x)w(x) dx =

 1
2
√
β0, ν = 1,

0, ν > 1,

In the sequel we need an auxiliary result for the sequence of only even functions {ψ2ν−1}
2m
ν=1 from (18).

This result enables us to get a simpler method for constructing generalized Gaussian quadratures of the
mentioned form.
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Lemma 4.1. Let {ψ2ν−1}
2m
ν=1 be a system of only even functions orthogonal with respect to the inner product ( f , 1) =∫ 1

−1 f (x)1(x)w(x) dx. Then the functions ϕν(t) = ψ2ν−1(
√

t), ν = 1, . . . , 2m, are orthogonal on (0, 1) in the following
sense

〈ϕν, ϕµ〉 =

∫ 1

0
ϕν(t)ϕµ(t)

w(
√

t)
√

t
dt = 0 (ν , µ). (20)

Proof. Let ν , µ. Since∫ 1

−1
ψ2ν−1(x)ψ2µ−1(x)w(x) dx = 2

∫ 1

0
ψ2ν−1(x)ψ2µ−1(x)w(x) dx = 0,

we have, by a change of variables x2 = t,∫ 1

0
ψ2ν−1(

√
t)ψ2µ−1(

√
t)

w(
√

t)
√

t
dt = 0 (ν , µ).

Thus, the system of functions ϕν(t) = ψ2ν−1(
√

t), ν = 1, . . . , 2m, satisfies the orthogonality relation (20).

Otherwise, the construction of symmetric quadrature rules on (−1, 1) can be significantly simplified by
a transformation from (−1, 1) to the interval (0, 1) and we will use it in the rest of this work.

4.4. Two equivalent weighted quadrature rules
Now, we consider (2m)-point symmetric quadrature with respect to an even weight function x 7→ W(x)

on (−1, 1),∫ 1

−1
f (x)W(x) dx =

m∑
k=1

Ak

(
f (xk) + f (−xk)

)
+ R[−1,1]

2m ( f ), (21)

where 0 < x1 < · · · < xm ≤ 1. Evidently, such a quadrature is exact for every odd function.
Now, we want to transform this quadrature (21) to the interval (0, 1). Namely, because of W(−x) = W(x),

we have∫ 1

−1
f (x)W(x) dx =

∫ 1

0

(
f (x) + f (−x)

)
W(x) dx,

and then, by changing variables x =
√

t, we obtain∫ 1

−1
f (x)W(x) dx =

∫ 1

0

(
f (
√

t ) + f (−
√

t )
) W(

√
t )

√
t

dt =

∫ 1

0
1(t)

W(
√

t )
√

t
dt,

where the function 1 is defined by

1(t) =
1
2

(
f (
√

t ) + f (−
√

t )
)
.

Then, the right-hand side of (21) reduces to

m∑
k=1

Ak

(
f (xk) + f (−xk)

)
+ R[−1,1]

2m ( f ) =

m∑
k=1

Bk1(τk) + R[0,1]
m (1), (22)

where we put

Bk = 2Ak, τk = x2
k , k = 1, . . . ,m, (23)
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and R[0,1]
m (1) = R[−1,1]

2m ( f ), so that the right-hand side in (22) corresponds to the transformed integral, i.e.,∫ 1

0
1(t)

W(
√

t )
√

t
dt =

m∑
k=1

Bk1(τk) + R[0,1]
m (1). (24)

In this way, we have proved the following result:

Lemma 4.2. Under conditions (23), the weighted quadrature formulas (21) and (24) are equivalent.

In the sequel we use this lemma in construction of quadrature formulas on (−1, 1), with 2m nodes, using
a construction of the corresponding rules on (0, 1), with only m nodes.

5. Construction of Gaussian quadrature rule (12)

In order to construct the quadrature formula (13), i.e.,∫ 1

−1
f (x)|x|γ(1 − x2)α log

1
|x|

dx =

m∑
k=1

AL
k ( f (xL

k ) + f (−xL
k )) + R2m(wL; f ),

we start with Lemma 4.2 and construct first the quadrature rule (24) with m nodes. In this case (24) should
be a weighted quadrature rule of Gaussian type, with respect to the weight function

w0(t) =
W(
√

t )
√

t
=

1
2

tβ(1 − t)α log
1
t
, β =

γ − 1
2

,

because

W(x) = |x|γ(1 − x2)α log
1
|x|

=
1
2
|x|γ(1 − x2)α log

1
|x|2

.

The moments of this weight function mk =
∫ 1

0 tkw0(t) dt can be exactly calculated in terms of the so-called
digamma function (i.e., the logarithmic derivative of the gamma function) ψ(z) = Γ′(z)/Γ(z). So, we have
(cf. [26, p. 490])

mk = −
1
2

∫ 1

0
tk+β(1 − t)α log t dt =

1
2

B(α + 1, β + k + 1)[ψ(α + β + k + 2) − ψ(β + k + 1)], k ≥ 0,

which is enough for finding recursion coefficients in the three-term recurrence relation for polynomials
orthogonal with respect to the weight function w0 on (0, 1), as well as for the nodes τk and the weights
Bk, k = 1, . . . ,m, in the Gaussian quadrature formula (24), by our Mathematica package OrthogonalPoly-
nomials (see [4] and [23]), because Mathematica evaluates ψ(z) to arbitrary numerical precision, using the
function PolyGamma[z]. Then, by (23) we obtain the parameters xL

k and AL
k in the rule (13).

For example, using our Mathematica package OrthogonalPolynomials (see [4] and [23]) and executing
the following commands:

<< orthogonalPolynomials‘

mom =Table[Gamma[al+1]Gamma[be+k+1]/(2Gamma[al+be+k+2])(PoyGamma[al+be+k+2]

-PolyGamma[be+k+1]), {k,0,39}]/. {al -> 0, be -> -1/2};

{alpha, beta} = aChebyshevAlgorithm[mom, WorkingPrecision -> 35];

{alpha1, beta1} = aChebyshevAlgorithm[mom, WorkingPrecision -> 50];

N[Max[Abs[alpha1/alpha-1], Abs[beta/beta1-1]], 3]
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we obtain the first 20 recurrence coefficients (for α = 0 and β = −1/2 in the weight w0) with the maximal
relative error 5.50 × 10−30, using the working precision of 35 decimal digits. Notice that for calculating this
maximal relative error in recursive coefficients we have to compute them with some better precision (in
this case we used 50 decimal digits).

Now, we can calculate Gaussian parameters (nodes and weights) in (24) for each m ≤ 20, as well as the
parameters in the rule (13). For example, for m = 10 we print the parameters xL

k and AL
k in the rule (13), with

20 decimal digits.

PGQ[m_]:= aGaussianNodesWeights[m,alpha,beta,WorkingPrecision -> 30,Precision -> 25]

{tau, B} = PGQ[10]; {xL, AL} = {Sqrt[tau], B/2};

Print["nodes = ", N[xL, 20]]; Print["weights = ", N[AL, 20]];

nodes = {0.058684713389643455348,0.20085590974338672323,0.34102346665699661535,

0.47499755685218773898,0.59933105712959326204,0.71098630175917040439,

0.80729488074114865580,0.88597995933835106670,0.94519165897723331249,

0.98353845345472765660}

weights = {0.40077930960551466949,0.22788836401795107375,0.14812360023344707567,

0.096547816551015655829,0.060649749122039659929,0.035609402612321070364,

0.018803993942658554996,0.0083797607340355934749,0.0027604277995848179492,

0.00045757538143182854107}

Similarly, for α = β = −1/2 and m = 5, we get

nodes = {0.11002372481701129812,0.38352164350631725367,0.63216422494287654400,

0.82962888620377180320,0.95635128465561669026}

weights = {0.61005071778693605514,0.27611428447805086073,0.13427676855303110178,

0.055126965252488246396,0.013224309081294801204}

Example 5.1. For functions x 7→ f1(x) = cos(10x) and x 7→ f2(x) = cos(50x2) we consider the integrals

I( f1) =

∫ 1

−1
cos(10x) log

1
|x|

dx =
1
5

Si (10) = 0.3316695188437748098661943758779 . . .

and

I( f2) =

∫ 1

−1
cos(50x2) log

1
|x|

dx =
1
5

(
2000 2F3

(5
4
,

5
4

;
3
2
,

9
4
,

9
4

;−625
)

+
√
πC

(
10
√
π

))
= 0.659723294638846952127061737394 . . . ,

where

Si (z) =

∫ z

0

sin t
t

dt and C(z) =

∫ z

0
cos

(
πt2

2

)
dt

are the sine integral function and the Fresnel integral, respectively, and 2F3 is the hypergeometric function,
defined by

2F3(a1, a2; b1, b2, b3; z) =

+∞∑
k=0

(a1)k(a2)k

(b1)k(b2)k(b3)k
·

zk

k!
,
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Figure 2: Graphics of the integrands x 7→ cos(10x) log(1/|x|) (left) and x 7→ cos(50x2) log(1/|x|) (right)

Table 1: Quadrature sums Q2m( f j) and their relative errors for integrals I( f j), j = 1, 2

m Q2m( f1) err2m( f1) m Q2m( f2) err2m( f2)
4 0.33009775491530849648801487374 4.74(−3) 12 0.857128301 2.99(−1)
6 0.33166949067521330644013062255 8.49(−8) 14 0.674875330 2.30(−2)
8 0.33166951884374388926728589986 9.32(−14) 16 0.659977439 3.58(−4)

10 0.33166951884377480986183339753 1.31(−20) 18 0.659716096 1.09(−5)
12 0.33166951884377480986619437576 3.70(−28) 20 0.659722976 4.83(−7)

where (a)k is the Pochhammer symbol, (a)k = a(a + 1) · · · (a + k − 1) = Γ(a + k)/Γ(a). Integrands in I( f1) and
I( f2) are presented in Figure 2.

In order to calculate these integrals we use the quadrature rule (13) (with the parameters α = 0 and
β = −1/2). In Table 1 we present quadrature approximations and the corresponding relative errors,

Q2m( f ) =

m∑
k=1

AL
k ( f (xL

k ) + f (−xL
k )), err2m( f ) =

∣∣∣∣Q2m( f ) − I( f )
I( f )

∣∣∣∣.
Digits in error are underlined, and numbers in parenthesis indicate the decimal exponents.

As we can see, in the case of I( f1), the convergence of the quadrature rule (13) is very fast.

6. Construction of Gaussian quadrature rule (13)

We return now to construction of a direct (universal) quadrature of Gaussian type (14), i.e.,∫ 1

−1
f (x) |x|γ(1 − x2)α dx =

m∑
k=1

Ak

(
f (xk) + f (−xk)

)
+ R2m(w; f ), (25)

where w(x) = |x|γ(1 − x2)α, α, γ > −1. As we have seen earlier, a nonlinear system of equations for finding
nodes xk and weight coefficients Ak, k = 1, . . . ,m, is given by (19). Using Lemmas 4.1 and 4.2, this system of
equations becomes

m∑
k=1

Bkϕν(τk) =
√
β0 δν,1, ν = 1, . . . , 2m, (26)

where {ϕν}2m
ν=1 is a system of orthogonal functions on (0, 1) with respect to the weight function t 7→

w(
√

t)/
√

t = tβ(1 − t)α, β = (γ − 1)/2, and δν,1 is the Kronecker’s delta. Evidently, this system of equa-
tions gives a characterization for the quadrature formula (24) to be Gaussian on (0, 1).
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In our construction of orthonormal system of functions {ϕ1, ϕ2, . . . , ϕ2m}, we use an orthogonalization
process described in [19, pp. 75–77], starting from the system of 2m linearly independent functions U =
{1, t, . . . , tm−1, log t, t log t, . . . , tm−1 log t}. Then, for k ∈N0 and α, β > −1, we need an integral of the form∫ 1

0
tβ+k(1 − t)α dt = B(α + 1, β + k + 1) =

Γ(α + 1)Γ(β + k + 1)
Γ(α + β + k + 2)

,

as well as the following integrals (cf. [26, p. 490])∫ 1

0
tβ+k(1 − t)α log t dt = B(α + 1, β + k + 1)[ψ(β + k + 1) − ψ(α + β + k + 2)]

and∫ 1

0
tβ+k(1− t)α log2 t dt = B(α+ 1, β+ k + 1)

{
[ψ(β+ k + 1)−ψ(α+ β+ k + 2)]2 +ψ′(β+ k + 1)−ψ′(α+ β+ k + 2)

}
.

We mention that Mathematica evaluates derivatives ψ(n)(z) to arbitrary numerical precision, using the
function PolyGamma[n,z]. Otherwise, the first m functions of this orthogonal system are, in fact, the
orthonormal polynomials (see Subsections 4.2 and 4.3)

ϕk+1(t) =

√
k!Γ(k + α + β + 1)
Γ(2k + α + β + 1)

·
P(α,β)

k (2t − 1)√
B(k + α + 1, k + β + 1)

, k = 0, 1, . . . ,m − 1.

Thus, our method for constructing quadrature rules of the form (24) is based on solving system of
nonlinear equations (26), i.e.,

fν(x) = fν(B, t) = B1ϕν(τ1) + B2ϕν(τ2) + · · · + Bmϕν(τm) =
√
β0 δν,1, ν = 1, . . . , 2m, (27)

by the standard Newton–Kantorovich method. Here, x is (2m)-dimensional vector, which coordinates
are weights and nodes in the quadrature rule (24), i.e., x = [B1 · · · Bm τ1 · · · τm]T. Also, we introduce
m-dimensional vectors B = [B1 · · · Bm]T and t = [τ1 · · · τm]T.

The Jacobian for the system of equations (27) can be easily calculated in the form

J(x) =



∂ f1
∂B1

· · ·
∂ f1
∂Bm

∂ f1
∂τ1

· · ·
∂ f1
∂τm

∂ f2
∂B1

· · ·
∂ f2
∂Bm

∂ f2
∂τ1

· · ·
∂ f2
∂τm

...

∂ f2m
∂B1

· · ·
∂ f2m
∂Bm

∂ f2m
∂τ1

· · ·
∂ f2m
∂τm


=

 Um(t) Ym(B, t)

Vm(t) Zm(B, t)

 = W2m(B, t), (28)

where the matrices Um = Um(t), Vm = Vm(t), Ym = Ym(B, t), and Zm = Zm(B, t) are given by

Um =


ϕ1(τ1) ϕ1(τ2) · · · ϕ1(τm)
ϕ2(τ1) ϕ2(τ2) ϕ2(τm)
...

ϕm(τ1) ϕm(τ2) ϕm(τm)

 , Vm =


ϕm+1(τ1) ϕm+1(τ2) · · · ϕm+1(τm)
ϕm+2(τ1) ϕm+2(τ2) ϕm+2(τm)

...
ϕ2m(τ1) ϕ2m(τ2) ϕ2m(τm)

 ,

Ym =


B1ϕ′1(τ1) B2ϕ′1(τ2) · · · Bmϕ′1(τm)
B1ϕ′2(τ1) B2ϕ′2(τ2) Bmϕ′2(τm)

...
B1ϕ′m(τ1) B2ϕ′m(τ2) Bmϕ′m(τm)

 , Zm =


B1ϕ′m+1(τ1) B2ϕ′m+1(τ2) · · · Bmϕ′m+1(τm)
B1ϕ′m+2(τ1) B2ϕ′m+2(τ2) Bmϕ′m+2(τm)

...
B1ϕ′2m(τ1) B2ϕ′2m(τ2) Bmϕ′2m(τm)

 .
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In matrix notation, the system of equations (27) has the following form

f(x) =Φ(B, t) =

[
Um(t)B −

√
β0e1

Vm(t)B

]
= 0, (29)

where e1 is the first coordinate m-dimensional vector, e1 = [1 0 · · · 0]T.
Following [22] let ∆B = B − B̂ and ∆t = t − t̂, where (B̂, t̂) is the unique solution of the nonlinear system

of equations (29). Then, we can formulate the Newton–Kantorovich method, using the following linearized
system of equations obtained by truncating the Taylor expansion at the point (B, t),

Um∆B + Ym∆t = UmB −
√
β0e1,

Vm∆B + Zm∆t = VmB,

or in the matrix form

W2m

 ∆B

∆t

 =

 UmB −
√
β0e1

Vmt

 . (30)

Taking the solution (B̂, t̂) of (30) to be the next approximation, our iterative process becomes

t̂ = t +
√
β0

[
VmU−1

m Ym − Zm

]−1
VmU−1

m e1

B̂ = U−1
m

[
Ym(t − t̂) +

√
β0e1

]
 . (31)

We can prove that this process is quadratic convergent, providing sufficiently good starting values.
For solving the equation f(x) = 0, with a continuously differentiable mapping f, it is well known (cf. [11,

pp. 284–287]) that there exists some ε > 0, such that for each x0 with the property ‖x0 − x̂‖ ≤ ε, the sequence
{xk}

+∞
k=0, generated by the Newton-Kantorovich method

xk+1 = xk − (J(xk))−1f(xk), k = 0, 1, . . . ,

tends to the solution x̂ with a quadratic convergence ‖xk+1 − x̂‖ = O(‖xk − x̂‖2). In our case we have the
following result:

Lemma 6.1. For sufficiently good starting values, which can be provided by the method of continuation, the presented
form of the Newton-Kantorovich method (31) is quadratic convergent.

Proof. Since the system of functions {ϕν}2m
ν=1 is an extended Hermite (EH) system and the weights Bk,

k = 1, . . . ,m, are positive, from (28) and (8) we see that

det W2m(B̂, t̂) = (B1 · · ·Bm)D2m(ϕ1, ϕ1, . . . , ϕ2m) , 0,

and therefore the Jacobian has full rank. Also, the system {ϕν}mν=1 is Chebyshev, and therefore the matrix Um
is invertible. Thus, it is enough to apply the theorem on the matrix inversion in the block form presented
in [13, p. 13] and [31, p. 201] to finish the proof.

Remark 6.2. For numerical applications of weighted-residual finite element methods, J.A. Crow [3] pre-

sented a quadrature rule
∫ 1

0 1(t) dt =
∑m

k=1 wk1(xk) + Rm(1), which is exact for integrands of the form
t 7→ p(t) + q(t) log t, where p and q are polynomials of degree at most m − 1. In his construction, a selection
of power functions on [0, 1] (monomials) as a natural basis leads to a very ill-conditioned Vandermonde
system of equations. For example, in the case m = 5, condition numbers of this matrix during the iterative
process varied between 108 and 1015, which means a loss of about 8 to 15 decimal digits in computations.
Because of that the author used the shifted Legendre polynomials on [0, 1] as a better selection of basis
functions, as well as Smith’s FM multiple precision software [27] to perform all computations using about
50 significant decimal digits.
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In our method, in order to get well-conditioned matrices during the numerical procedure, we use
the orthonormal system as a basis of functions, so that the method is stable. The main problem with
the NewtonKantorovich method is how to provide sufficiently good starting values. Our strategy in the
construction is based on the method of continuation, starting from the corresponding standard Gaussian
formula (with a polynomial degree of exactness). The convergence is quadratic.

Table 2: Quadrature parameters in (25) for α = β = −1/2 and m = 2(1)5
m k xk Ak
2 1 1.5687932220133083737(−1) 4.9023770831392127704(−1)

2 8.4597799643685904352(−1) 1.0805586184809753422
3 1 7.4330911998429636136(−2) 2.3536348707782220590(−1)

2 4.9067720343094899076(−1) 5.9474998941244362493(−1)
3 9.3020808634535177637(−1) 7.4068285030463078840(−1)

4 1 4.3043445929275625351(−2) 1.3725763004144154931(−1)
2 3.0329580016011919663(−1) 3.7180716249909688774(−1)
3 6.8411187359652082596(−1) 5.0325894862261033029(−1)
4 9.6067483342440115801(−1) 5.5847258563174785190(−1)

5 1 2.7998919084010510299(−2) 8.9632942674696156504(−2)
2 2.0329461303212981917(−1) 2.5274310616604007523(−1)
3 4.9319306890293015213(−1) 3.6032635832736034825(−1)
4 7.8928360355099509366(−1) 4.2078564339874673998(−1)
5 9.7486024601950383507(−1) 4.4730827622805329928(−1)

Nodes and weights in the quadrature formula (25) for α = β = −1/2 (γ = 0) and m = 2, 3, 4, and 5 are
presented in Table 2. For m = 1 it is easy to find

x1(α, β) = exp
(1

2

(
ψ(β + 1) − ψ(α + β + 2)

))
, A1(α, β) =

1
2

B(α + 1, β + 1).

Figure 3: The functions α 7→ x1(α, β) (left) and α 7→ A1(α, β) (right) in quadrature rule (25) for m = 1, when β = −1/2 (solid line), β = 0
(dashed line), and β = 1/2 (dotted line)

The behaviour of x1(α, β) and A1(α, β) for −1 < α < 2 and some selected values of β are presented in
Figure 3. For example, for α = β = −1/2 we have x1 = 1/2 and A1 = π/2.

Example 6.3. We consider the integral

I =

∫ 1

−1

ex log x2 + cos x
√

1 − x2
dx = −2.2656196675547437914 . . . .
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Applying the quadrature rule (25) to this integral we obtain approximations

Q2m =

m∑
k=1

Ak

(
f (xk) + f (−xk)

)
,

with relative errors err2m presented in Table 3. Digits in error are underlined.

Table 3: Quadrature sums Q2m and their relative errors for the rule (25), as well as relative errors for the Gauss-Legendre and
Gauss-Chebyshev rules

m Q2m err2m 2m errL
2m errCh

2m
1 −2.1539983044439 4.93(−2) 20 7.34(−2) 9.60(−2)
2 −2.2732059700768 3.35(−3) 40 3.72(−2) 4.80(−2)
3 −2.2656304863533 4.78(−6) 60 2.49(−2) 3.20(−2)
4 −2.2656197046209 1.64(−8) 80 1.87(−2) 2.40(−2)
5 −2.2656196675727 7.93(−12) 100 1.50(−2) 1.92(−2)

The last two columns give relative errors in the corresponding approximations for the Gauss-Legendre
and Gauss-Chebyshev rules with 2m = 20(20)100 points. As we can see these rules are very slow.
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