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The Exponential Cubic B-Spline Collocation Method for the
Kuramoto-Sivashinsky Equation
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Abstract. In this study the Kuramoto–Sivashinsky (KS) equation has been solved using the collocation
method, based on the exponential cubic B-spline approximation together with the Crank Nicolson. KS
equation is fully integrated into a linearized algebraic equations. The results of the proposed method are
compared with both numerical and analytical results by studying two text problems. It is found that the
simulating results are in good agreement with both exact and existing numerical solutions.

1. Introduction

The Kuramoto–Sivashinsky (KS) equation, which is frequently encountered in the study of continuous
media, exhibits complex chaotic behavior and have the following form

ut + uux + αuxx + ϑuxxxx = 0, x ∈ [x0, xN], t ∈ (0,T] (1)

with the boundary conditions

u(x0, t) = 10,u(xN, t) = 11 (2)
ux(x0, t) = 0, ux(xN, t) = 0 (3)

uxx(x0, t) = 0, uxx(xN, t) = 0 (4)

and initial condition

u(x, 0) = u0,

where ε and ϑ are arbitrary constants related to the growth of linear stability and surface tension, respec-
tively. The equation includes terms of linear growth uxx, high order dissipation uxxxx and nonlinear advection
uux.When ϑ is zero, the surface tension term is removed and the equation gets reduced to Burgers equation.
It is used as model equation in a number of applications including concentration waves and plasma physics,
flame propagation and reaction-diffusion combustion dynamics, free surface film-flows and two face flows
in cylindrical or plain geometries. Due to its wide applications, it has attracted considerable attention to
be found analytical and numerical solutions. Thus, the solutions of the KS equation have been obtained by
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using many methods including finite difference methods[9, 10], tanh-function method [8], discontinuous
Galerkin method [25], Chebyshev spectral collocation method [1], pseudo-spectral method [9], radial basis
function (RBFs) based mesh-free method [16], He’s variational iteration method [14], meshless method [23].

An alternative exponential B-spline basis functions to the polynomial B-spline basis functions have
been introduced by Mc Cartin and its properties are given in his studies[3–5]. The exponential B-spline
functions are extensively used for the computer aided design, the curve and surface approximation. The
exponential B-spline basis functions include free parameters which determines the shapes of the B-splines.
This may give good approximation for data having sharp changes. Recently the exponential B-spline
functions are used to set up numerical methods for the differential equations. Solutions of singularly
perturbed problem are given using some variant of the exponential B-spline collocation methods in the
studies [7, 15, 22]. The numerical solutions of the equal width, generalized Burgers–Fisher, Korteweg-
de Vries (KdV), Convection-Diffusion and Generalized Long Wave Equations are obtained by using the
exponential B-spline collocation method [12, 13, 18, 20, 21]. Spline functions are employed for establishing
the algorithms to compute solutions of KS equation. The novel B-spline based Galerkin finite element
approach is presented in the study[6]. The orthogonal cubic spline collocation method [2] is given to solve
the KS equation. The quintic B-spline collocation scheme [19] is presented by R.C. Mittal, Geeta Arora[19].
The Septic B-spline collocation algorithm is set up to find numerical solutions of the KS-equation in the
paper[17]. Since the KS equation include the fourth order derivatives, the KS equation should turn into the
system of partial differential equation by using space splitted technique to be able to apply the exponential
B-spline based collocation method. The exponential B-splines have got the second order continuity over
the defined region. The first and second order continuity requirements of the exponential B-spline based
approximation function are guarantied over the problem domain for the system of partial differential
equation including the second order derivatives.

In this research, the (KS) equation have been solved numerically using collocation method based on
Crank-Nicolson for the time integration and exponential cubic B-spline functions for the space integration.
The performance of the method is shown by studying two text problems. Results and graphical solutions
are given in the section of the numerical methods to make comparison with some earlier studies.

2. Exponential Cubic B-Spline Collocation Method

In this section we will carry on the space and temporal discretization of the time dependent one
dimensional KS equation. We will obtain fully-discrete KS-equation in the from of the recursive algebraic
equation. Knots are equally distributed over the problem domain [a, b] as

π : a = x0 < x1 < . . . < xN = b

with mesh spacing h = (xN − x0)/N. The exponential B-splines, Bi(x),with knots at the points of π together
with fictitious knots x−3, x−2, x−1, xN+1, xN+2, xN+3 outside the problem domain[a, b] can be defined as

Bi(x) =



b2

(
(xi−2 − x) −

1
p
(
sinh(p (xi−2 − x))

))
[xi−2, xi−1] ,

a1 + b1 (xi − x) + c1 exp
(
p (xi − x)

)
+ d1 exp

(
−p (xi − x)

)
[xi−1, xi] ,

a1 + b1(x − xi) + c1 exp
(
p (x − xi)

)
+ d1 exp

(
−p (x − xi)

)
[xi, xi+1] ,

b2

(
(x − xi+2) −

1
p

(sinh
(
p (x − xi+2)

)
)
)

[xi+1, xi+2] ,

0 otherwise.

(5)
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where

a1 =
phc

phc − s
, b1 =

p
2

[
c(c − 1) + s2

(phc − s)(1 − c)
], b2 =

p
2(phc − s)

,

c1 =
1
4

[
exp(−ph)(1 − c) + s(exp(−ph) − 1)

(phc − s)(1 − c)
]

d1 =
1
4

[
exp(ph)(c − 1) + s(exp(ph) − 1)

(phc − s)(1 − c)
]

and c = cosh(ph), s = sinh(ph), p is a free parameter. When p = 1, graph of the exponential cubic B-splines
over the interval [0.1] is depicted in Fig. 1.

Figure 1: Solutions of KS equation

{B−1(x),B0(x), · · · ,BN+1(x)} forms a basis for the functions defined over the interval [a, b]. Each basis
function Bi(x) is twice continuously differentiable. The values of Bi(x),B′i(x) and B′′i (x) at the knots xi can be
computed from Eq.(5) and are documented in Table 1.

Table 1: Values of Bi(x) and its first and second derivatives
at the knot points

x xi−2 xi−1 xi xi+1 xi+2

Bi 0
s − ph

2(phc − s)
1

s − ph
2(phc − s)

0

B′i 0
p(1 − c)

2(phc − s)
0

p(c − 1)
2(phc − s)

0

B′′i 0
p2s

2(phc − s)
−

p2s
phc − s

p2s
2(phc − s)

0

Now suppose that an approximate solution UN to the unknown U is given by

UN(x, t) =

N+1∑
i=−1

δiBi(x) (6)
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where δi are time dependent parameters to be determined from the boundary and initial conditions,
collocation form of the KS equation. Evaluation of Eq. (6), its first and second derivatives at knots xi using
the Table 1 yields the nodal values Ui in terms of parameters

Ui = U(xi, t) =
s − ph

2(phc − s)
δi−1 + δi +

s − ph
2(phc − s)

δi+1,

U′i = U′(xi, t) =
p(1 − c)

2(phc − s)
δi−1 +

p(c − 1)
2(phc − s)

δi+1

U′′i = U′′(xi, t) =
p2s

2(phc − s)
δi−1 −

p2s
phc − s

δi +
p2s

2(phc − s)
δi+1.

(7)

To be able to apply the exponential B-spline based collocation method, KS equation is space-splitted as

Ut + UUx + αV + ϑVxx = 0
V −Uxx = 0. (8)

This system includes the second-order derivatives so that smooth approximation can constructed with
the combination of the exponential B-splines. The time integration of the space-splitted KS equation is
performed by the Crank-Nicolson method as

Un+1
−Un

∆t
+

(UUx)n+1 + (UUx)n

2
+ α

Vn+1 + Vn

2
+ ϑ

Vn+1
xx + Vn

xx

2
= 0

Vn+1 + Vn

2
−

Uxx
n+1 + Uxx

n

2
= 0

(9)

where Un+1 = U(x, (n + 1)∆t) represent the solution at the (n + 1)th time level. Here tn+1 = tn + ∆t, ∆t is the
time step, superscripts denote n th time level, tn = n∆t.

One linearize terms (UUx)n+1and (UUx)n in (9) as [24]

(UUx)n+1 = Un+1Un
x + UnUn+1

x −UnUn
x

(UUx)n = UnUn
x

(10)

to obtain the time-integrated linearized the KS Equation:

2
∆t

Un+1
−

2
∆t

Un + Un+1Un
x + UnUn+1

x + α
(
Vn+1 + Vn

)
+ ϑ(Vn+1

xx + Vn
xx) = 0

Vn+1 + Vn

2
−

Uxx
n+1 + Uxx

n

2
= 0

(11)

To proceed with space integration of the (11), an approximation of Un and Vn in terms of the unknown
element parameters and exponential B-splines separately can be written as

UN(x, t) =

N+1∑
i=−1

δiBi(x), VN(x, t) =

N+1∑
i=−1

φiBi(x). (12)

Substitute Eqs (12) into (11) and collocate the resulting the equation at the knots xi, i = 0, ...,N yields a linear
algebraic system of equations:

[(
2
∆t + K2

)
α1 + K1β1

]
δn+1

m−1 +
(
αα1 + ϑγ1

)
φn+1

m−1 +
[(

2
∆t + K2

)
α2

]
δn+1

m +
(
αα2 + ϑγ2

)
φn+1

m0

+
[(

2
∆t + K2

)
α1 − K1β1

]
δn+1

m+1 +
(
αα1 + ϑγ1

)
φn+1

m+1
= 2

∆tα1δn
m−1 −

(
αα1 + ϑγ1

)
φn

m−1 + 2
∆tα2δn

m −
(
αα2 + ϑγ2

)
φn

m + 2
∆tα1δn

m+1 − (αα1 + υϑ1)φn
m+1

−γ1δn+1
m−1 + α1φn+1

m−1 − γ2δn+1
m + α2φn+1

m − γ1δn+1
m+1 + α1φn+1

m+1
= γ1δn

m−1 − α1φn
m−1 + γ2δn

m − α2φn
m + γ1δn

m+1 − α1φn
m+1, m = 0...N, n = 0, 1...,

(13)
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where

K1 = α1δi−1 + α2δi + α1δi+1
K2 = β1δi−1 − β1δi+1

α1 =
s − ph

2(phc − s)
, α2 = 1, β1 =

p(1 − c)
2(phc − s)

,

γ1 =
p2s

2(phc − s)
, γ2 = −

p2s
phc − s

The system (13) can be converted the following matrices system;

Axn+1 = Bxn (14)

where

A =



νm1 νm2 νm3 νm4 νm5 νm2
−γ1 α1 −γ2 α2 −γ1 α1

νm1 νm2 νm3 νm4 νm5 νm2
−γ1 α1 −γ2 α2 −γ1 α1

. . .
. . .

. . .
. . .

. . .
. . .

νm1 νm2 νm3 νm4 νm5 νm2
−γ1 α1 −γ2 α2 −γ1 α1



B =



νm6 νm7 νm8 νm9 νm6 νm7
γ1 −α1 γ2 −α2 γ1 −α1

νm6 νm7 νm8 νm9 νm6 νm7
γ1 −α1 γ2 −α2 γ1 −α1

. . .
. . .

. . .
. . .

. . .
. . .

νm6 νm7 νm8 νm9 νm6 νm7
γ1 −α1 γ2 −α2 γ1 −α1


and

νm1 =
(

2
∆t + K2

)
α1 + K1β1 νm4 =

(
αα2 + ϑγ2

)
νm7 = −

(
αα1 + ϑγ1

)
νm2 =

(
αα1 + ϑγ1

)
νm5 =

(
2
∆t + K2

)
α1 − K1β1 νm8 = 2

∆tα2

νm3 =
(

2
∆t + K2

)
α2 νm6 = 2

∆tα1 νm9 = −
(
αα2 + ϑγ2

)
The system (14) consist of 2N + 2 linear equation in 2N + 6 unknown parameters

xn+1 = (δn+1
−1 , φ

n+1
−1 , δ

n+1
0 , φn+1

0 , . . . , δn+1
n+1, φ

n+1
n+1, ).

To obtain a unique solution, an additional four constraints are needed. These are obtained from the
imposition of the Robin boundary conditions so that Uxx(a, t) = 0, V(a, t) = 0 and Uxx(b, t) = 0, V(b, t) = 0
gives the following equations:

γ1δ−1 + γ2δ0 + γ1δ1 = 0
α1φ−1 + α2φ0 + α1φ1 = 0
γ1δN−1 + γ2δN + γ1δN+1 = 0
α1φN−1 + α2φN + α1φN+1 = 0

Elimination of the parameters δ−1, φ−1, δN+1, φN+1, from the Eq.,(13) using the above equations gives
a solvable system of 2N + 2 linear equations including 2N + 2 unknown parameters. After finding the
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unknown parameters via the application of a variant of Thomas algorithm, approximate solutions at the
knots can be obtained by placing successive three parameters in the Eq.(7).

Initial parameters δ0
i , , φ

0
i , i = −1, . . . ,N + 1 are needed to start the iteration procedure (14). Thus the

following requirements help to determine initial parameters:

(UN)xx(a, 0) = 0 = γ1δ0
−1 + γ2δ0

0 + γ1δ0
1,

(UN)xx(xi, 0) = γ1δ0
i−1 + γ2δ0

i + γ1δ0
i+1 = Uxx(xi, 0), i = 1, ...,N − 1

(UN)xx(b, 0) = 0 = γ1δ0
N−1 + γ2δ0

N + γ1δ0
N+1,

(VN)(a, 0) = 0 = α1φ0
−1 + α2φ0

0 + α1φ0
1

(VN)(xi, 0) = α1φ0
i−1 + α2φ0

i + α1φ0
i+1 = V(xi, 0), i = 1, ...,N − 1

(VN)(a, 0) = α1φ0
N−1 + α2φ0

N + α1φ0
N+1

3. Numerical Validation

To see versatility of the present method, three numerical examples are studied in this section. The
accuracy of the schemes is measured in terms of the following global relative error

GRE =

√√√√√√√√√√√√√√√√√√√√√
N∑

j=1

∣∣∣∣(UN)n
j − (U)n

j

∣∣∣∣
N∑

j=1

∣∣∣∣(U)n
j

∣∣∣∣ (15)

is used where UN denotes numerical solution and U denotes analytical solution.
Numerical solution of KS equation (1) is obtained for α = 1 and ϑ = 1 with the exact solution given by

u(x, t) = b +
15
19

d
[
e tanh (k (x − bt − x0)) + f tanh3 (k (x − bt − x0))

]
the initial condition is taken from the exact solution together with boundary conditions given by (2-4). This
example is studied in [11, 19, 25]. The above solution models the shock wave propagation with the speed b
and initial position x0.

Case 1: We have considered domain as [x0, xN] = [−30, 30] with time step ∆t = 0.01 and number of

partitions = 150. In order to compare the solutions with [19] we have taken b = 5, k = 1
2

√
11
19 , x0 = −12, d =√

11
19 , .e = −9, f = 11. A comparison of the global relative errors can be made among the proposed method,

the Lattice Boltzman method and quintic B-spline collocation method in Table 2. We have tried to find
best free parameters experientially in a predetermined interval. But we have not seen the effect of the free
parameters on increasing the accuracy. We see that the quintic collocation method produces a little less
error than the suggested method. The numerical results are plotted at different time step for ∆t = 0.005
and N = 400 in Fig. 2 and Fig. 3 shows projection of the solution on the x-t plane. Solution obtained by
exponential cubic B-spline collocation method is very close to the exact solutions due to the global relative
error obtained in Table 2

Table 2: Comparison of global relative error for Example a at different time t, N = 150
Time(t) p = 1 p = 0.0000002770 [19] [11]

1 8.74634 × 10−4 3.32908 × 10−4 3.81725 × 10−4 6.7923 × 10−4

2 1.30146 × 10−3 5.56364 × 10−4 5.51142 × 10−4 1.1503 × 10−3

3 1.73971 × 10−3 8.74899 × 10−4 7.03980 × 10−4 1.5941 × 10−3

4 2.23657 × 10−3 1.25164 × 10−3 8.63662 × 10−4 2.0075 × 10−3
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Fi1ure2 : Solutionso f KSequation Fi1ure3 : Projectedsolutionsonx − tplane

Case 2: We have run the algorithm with parameters b = 5, k =
1

2
√

19
, d =

1
√

19
, x0 = −25, e = −3, f = 1

over the domain [x0, xN] = [−50, 50] with ∆t = 0.01 and number of partitions as 200. In order to compare
the solutions with [19] and [11], the global relative errors are recorded in Table 3.

Table 3 : Comparison of global relative errors at different time t, N = 200
Time(t) p = 1 p = 0.0000007606 [19] [11]

1 3.64671 × 10−5 9.33798 × 10−6 6.50927 × 10−6 7.8808 × 10−6

2 4.94999 × 10−5 1.57173 × 10−5 7.13154 × 10−6 9.5324 × 10−6

3 6.32739 × 10−5 2.37302 × 10−5 7.31029 × 10−6 1.0891 × 10−5

4 7.78406 × 10−5 3.33367 × 10−5 8.77659 × 10−6 1.1793 × 10−5

Fig. 4 shows the numerical solutions at different times for ∆t = 0.005,N = 400. In Fig 5 view of the projected
solutions is depicted onto the x-t plane.

Fi1ure4 : Solutionso f KSequation Fi1ure5 : Projectedsolutiononx − tplane



O. Ersoy, I. Dag / Filomat 30:3 (2016), 853–861 860

(b) This example represents chaotic behaviors with the initial condition,

u(x, 0) = cos(
x
2

) sin(
x
2

)

with the boundary condition

uxx(0, t) = 0, uxx(4π, t) = 0

The computational domain [x0, xN] = [0, 4π] is used with N = 512, ∆t = 0.001, α = 1. It is shown that
KS-Equation is highly sensitive for choice of the parameter ϑ. In Figs. 6-9, we can observe the solution
pattern exhibiting complete chaotic behaviors on the x-t plane, respectively. Figures illustrate that for the
smaller value of ϑ, chaotic behavior starts to evolve earlier and seen more complex instabilities.

Fi1ure6 : Solutiononx − tplane f orϑ = 0.05 Fi1ure7 : Solutiononx − tplane f orϑ = 0.02

Fi1ure8 : Solutiononx − tplane f orϑ = 0.01 Fi1ure9 : Solutiononx − tplane f orϑ = 0.002
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4. Conclusion

Numerical treatment of the KS equation is carried out in the paper. Exponential B-spline collocation
algorithm gives the reliable solutions of the KS equations if compared with the existing results in literature.
The free parameter of the exponential B-splines is determined to give the least error by scanning values
with a small increment within a predetermined interval KS equation is reduced to linear system of algebraic
equations that is solved with the Thomas algorithm. Numerical accuracy is similar to results of both quintic
B-spline collocation and Bolzman methods and application of the method is simple. The complex chaotic
behavior are modelled reliably by the presented method.
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