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Abstract. A sequence (xn) of points in a topological vector space valued cone metric space (X, ρ) is called

p-quasi-Cauchy if for each c ∈
◦

K there exists an n0 ∈ N such that ρ(xn+p, xn) − c ∈
◦

K for n ≥ n0, where K

is a proper, closed and convex pointed cone in a topological vector space Y with
◦

K, ∅. We investigate
p-ward continuity in topological vector space valued cone metric spaces. It turns out that p-ward continuity
coincides with uniform continuity not only on a totally bounded subset but also on a connected subset of
X.

1. Introduction

A choice of a suitable definition of distance between images naturally leads to an environment in which
many possible metrics can be considered simultaneously and cone metric spaces lend themselves to this
requirement. One specific instance of this is in the analysis of the structural similarity (SSIM) index of
images (see [4, 5, 28]). SSIM is used to improve the measuring of visual distortion between images (see
[30]). In both of these contexts the difference between two images is calculated using multiple criteria,
which leads in a natural way to consider vector-valued distances. In 1934, Kurepa ([29]) introduced an
abstract metric space, in which the metric takes values in an ordered vector space. The metric spaces with
vector valued are studied under various names ([31, 33, 38]). Huang and Zhang in 2007 called such spaces
as cone metric spaces ([24]). Beg, Abbas, and Nazir [3], Beg, Azam, and Arshad [2] replaced the set of an
ordered Banach space by a locally convex Hausdorff topological vector space in the definition of a cone
metric and a generalized cone metric space. The connection between topological vector space valued cone
metric spaces and standard metric spaces and the respective fixed point results were considered by several
authors (see [22, 23, 25, 26, 36]).

Using the idea of continuity of a real function in terms of sequences, many kinds of continuities
were introduced and investigated, not all but some of them we recall in the following: slowly oscillating
continuity ([12]), quasi-slowly oscillating continuity, ∆-quasi-slowly oscillating continuity ([13, 14, 20]),
ward continuity, ([8]), δ-ward continuity, ([9]), p-ward continuity ([16]), statistical ward continuity, lacunary
statistical ward continuity, ([10, 11]). Investigation of some of these kinds of continuities lead some authors
to find certain characterizations of uniform continuity of a real function in terms of sequences in the above
manner ([37, Theorem 8], [10, Theorem 6], [6, Theorem 1], [7, Theorem 3.8]).

The aim of this paper is to investigate p-ward continuity in topological vector space valued cone metric
spaces.
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2. Preliminaries

Let Y be a topological vector space (TVS for short) with its zero vector θ. A nonempty subset K of Y is
called a convex cone if K + K ⊆ K and λK ⊆ K for λ ≥ 0. A convex cone K is said to be pointed if K∩ (−K) = {θ}.
Now, we first recall the concept of a topological vector space valued cone metric space. Let X be a nonempty
set. A vector-valued function ρ : X ×X→ Y satisfying the following conditions is called a topological vector
space valued cone metric (TVS-cone metric for short) on X, and (X, ρ) is said to be a topological vector space valued
cone metric space (TVS-cone metric space for short):

(CM1) ρ(x, y) ∈ K for all x, y ∈ X and ρ(x, y) = θ if and only if x = y;
(CM2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(CM3) ρ(x, z) − ρ(x, y) − ρ(y, z) ∈ K for all x, y, z ∈ X.

On the other hand, one can define a partial ordering � with respect to K by x � y⇔ y − x ∈ K. Now using
the notation � that the statement θ - ρ(x, y) for all x, y ∈ X is equivalent to the statement ρ(x, y) ∈ K for all
x, y ∈ X, and (CM3) is equivalent to the statement ρ(x, z) � ρ(x, y) + ρ(y, z) for all x, y, z ∈ X. In what follows

x ≺ y will stand for x � y and x , y, while x � y stands for y − x ∈
◦

K, where
◦

K denotes the interior of K.
There are topological vector space-valued cone metric spaces (TVS-cone metric spaces) which are not cone
metric space (see [35, Example 2.1 ]). In the following, unless otherwise specified, we always suppose that
Y is a locally convex Hausdorff TVS with its zero vector θ, K a proper, closed and convex pointed cone in Y

with
◦

K, ∅, and � a partial ordering with respect to K. Throughout this paper,N, and p will denote the set
of positive integers, an element ofN, respectively. In the sequel, X will always stand for a TVS-cone metric
space with a TVS-cone metric ρ. Recently in [19], it was proved that topology of a TVS-cone metric space
coincides with a topology given by a metric defined in [22].

3. Results

The concept of a Cauchy sequence involves far more than that the distance between successive terms is
tending to zero, and more generally speaking, than that the distance between p-successive terms is tending
to zero where by p-successive terms we mean xn+p and xn. Nevertheless, sequences which satisfy this
weaker property are interesting in their own right.

Definition 3.1. A sequence x = (xn) of points in X is called p-quasi-Cauchy if for each c ∈
◦

K there exists an

n0 ∈N such that ρ(xn+p, xn) − c ∈
◦

K for n ≥ n0.

We note that for the special case, p = 1 we obtain the definition in [18, page 926]), and for the special
case X is the real space we obtain [16, Definition 2.1]. A sequence x is quasi-Cauchy when p = 1. We will
denote the set of all p-quasi-Cauchy sequences by ∆p(X) for each p ∈N. We have

ρ(xn+p, xn) − ρ(xn+p, xn+p−1) − ρ(xn+p−1, xn+p−2) − . . . − ρ(xn+2, xn+1) − ρ(xn+1, xn) ∈ K

for every p ∈ N. Thus any quasi-Cauchy sequence is also p-quasi-Cauchy for any p ∈ N, but the converse
is not always true as it can be seen by considering the sequence (xn) defined by x2n−1 = x and x2n = y
for different elements x, y ∈ X. Any slowly oscillating sequence is p-quasi-Cauchy for each p ∈ N ([18]).
Cauchy sequences have the property that any subsequence of a Cauchy sequence is Cauchy. The analogous
property fails for p-quasi-Cauchy sequences.We see in the following example that for any p ∈N there exists
a p-quasi Cauchy sequence which is not a p − 1-quasi Cauchy sequence.

Example 3.2. Consider the sequence

(ξi) = (x1, x2, . . . , xp, x1, x2, . . . xp, . . . , x1, x2, . . . , xp, . . .)

where x1, x2, . . . , xp are different elements of X. Then the sequence (ξi) is not p − 1-quasi Cauchy, not p − 2
quasi Cauchy, . . ., not quasi Cauchy. It is not Cauchy as well. On the other hand, the subsequence

(ηi) = (x1, x2, . . . , xp−1, x1, x2, . . . , xp−1, . . . , x1, x2, . . . , xp−1, . . .)
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of p-quasi-Cauchy sequence (ξi) is not p-quasi Cauchy.

Definition 3.3. A subset E of X is called p-ward compact if any sequence of points in E has a has p-quasi-
Cauchy subsequence.

Since any slowly oscillating sequence is also a quasi-Cauchy sequence so is a p-quasi-Cauchy sequence,
we see that any slowly oscillating compact subset of X is p-ward compact for any p ∈ N. We see that
any finite subset of X is p-ward compact, the union of finite number of p-ward compact subsets of X is
p-ward compact and the intersection of any family of p-ward compact subsets of X is p-ward compact.
Furthermore any subset of a p-ward compact set of X is p-ward compact. Any totally bounded subset of X
is p-ward compact. Before giving an equivalence of total boundedness and p-ward compactness we give
the definition of total boundedness in TV cone metric spaces. A subset E of X is said to be a c-net in X if

X =
⋃

z∈A B(z, c) where B(z, c) = {x ∈ X : ρ(z, x) − c ∈
◦

K} for a fixed element c of
◦

K. (X, ρ) is called totally

bounded if it has a finite c-net in X for each c ∈
◦

K. A subspace (E, ρE) of (X, ρ) is said to be totally bounded if
it is totally bounded as a TVS-cone metric space in its own right (see [36] for the definition in Banach space
valued cone metric spaces). A subset E of a TVS-cone metric space X is said to be totally bounded if it is
totally bounded as a TVS-cone metric subspace.

Theorem 3.4. A subset E of X is totally bounded if and only if it is p-ward compact.

Proof. To prove that total boundedness implies p-ward compactness, take any sequence (xn) of points in E.

Let c be any fixed element of
◦

K. Since E can be covered by a finite number of subsets of X of diameter less
than c, one of these sets, which we denote by E1, must contain xn for infinitely many values of n. We may
choose a positive integer n1 such that xn1 ∈ E1. Since E1 is totally bounded, it can be covered by a finite

number of subsets of E1 satisfying δ(E1) − c
2 ∈

◦

K. One of these subsets of E1, which we denote by E2 with

δ(E2) − c
3 ∈

◦

K, contains xn for infinitely many n. Choose a positive integer n2 such that n2 > n1 and xn2 ∈ E2.
Since E2 ⊂ E1, it follows that xn2 ∈ E1 as well. Continuing in this way, we obtain for any positive integer

k, and a subset Ek of Ek−1 with δ(Ek) − c
k+1 ∈

◦

K, and a term xnk ∈ Ek of the sequence (xn), where nk > nk−1.

Since all xnk , xnk+1 , xnk+2 , . . ., xnk+ j , . . . lie in Ek and δ(Ek) − c
k+1 ∈

◦

K, it follows that (xnk ) is a p-quasi-Cauchy
subsequence of the sequence (xn). To prove that p-ward compactness implies total boundedness, suppose

that E is not totally bounded. Then there exists a c ∈
◦

K such that there does not exist a finite c-net. Take

any x1 ∈ E. Then BE(x1, c) , E, so there exists an x2 ∈ E such that c − ρ(x1, x2) <
◦

K, i.e. x2 < BE(x1, c), and

x2 ∈ E, where BE(x, c) = {y ∈ E : ρ(x, y) − c ∈
◦

K}. Then BE(x1, c) ∪ BE(x2, c) , E. Let x3 < BE(x1, c) ∪ BE(x2, c)

i.e. c − ρ(x1, x2) <
◦

K, c − ρ(x1, x3) <
◦

K, and c − ρ(x2, x3) <
◦

K. Continuing the process in this manner, one can
obtain a sequence (xn) of points in E such that

i.e. c − ρ(xi, xn) <
◦

K (i = 1, 2, . . . ,n − 1) and (n = 1, 2, . . .), n , i.

The sequence (xn) constructed in this manner has no p-quasi-Cauchy subsequence. This completes the
proof of the theorem.

We note that [16, Theorem 2.3] is a special case of Theorem 3.4 for X = R; [11, Theorem 3 (a)⇔ (b)] is a
special case of Theorem 3.4 when X is a metric space and p = 1.

Corollary 3.5. A subset of X is slowly oscillating compact if and only if it is p-ward compact for a p ∈ N (see
[12, 18]).

Corollary 3.6. A subset of X is slowly oscillating compact if and only if it is totally bounded (see [11]).

Corollary 3.7. A subset of X is ward compact if and only if it is p-ward compact for every p ∈N ([8]).
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Theorem 3.8. If X is p-ward compact, then it is separable.

Proof. Let X be p-ward compact. X is totally bounded by Theorem 3.4. Take any c0 ∈
◦

K. Total boundedness
of X implies that X has a finite c0

n -net for each n ∈ N. Now denote this c0
n -net by An = {a1, a2, . . . , akn }. Write

A =
⋃
∞

n=1 An. It is clear that A is countable since each An is countable. Now we are going to show that

A = X. Let x be any element in X and c be any element in
◦

K. Then we can find an n0 ∈N such that c− c0
n0
∈
◦

K.

Then X =
⋃kn

i=1 B(ai,
c0
n0

). There exists an a j such that x ∈ B(a j,
c0
n0

). Hence B(x, c)
⋂

A , ∅, so we have x ∈ A.

Hence A = X. The proof is therefore complete.

Since every compact TVS cone metric space is p-ward compact, we obtain that any compact TVS cone
metric space is separable.

Now we introduce the definition of p-ward continuity in a TVS-cone metric space in the following.

Definition 3.9. A function defined on a subset E of X is called p-ward continuous if it preserves p-quasi-
Cauchy sequences, i.e. ( f (xn)) is a p-quasi-Cauchy sequence whenever (xn) is a p-quasi-Cauchy sequence of
points in E.

We note that one can obtain [8, page 227, Definition 2], for the real case with the special case p = 1, one
can also obtain [6, page 328], [11, Definition 1] for the metric space setting with the special case p = 1, and
one can also obtain [16, Definition 3.1] for the real case. On the other hand, p-ward continuity cannot be
obtained by any G-sequential continuity in the manner of [15] and [32].

In connection with p-quasi-Cauchy sequences, slowly oscillating sequences, and convergent sequences
the problem arises to investigate the following types of continuity of a function on R.

(∆p(X)) (xn) ∈ ∆p(X)⇒ ( f (xn)) ∈ ∆p(X),

(∆p(X)c) (xn) ∈ ∆p(X)⇒ ( f (xn)) ∈ c,

(c) (xn) ∈ c⇒ ( f (xn)) ∈ c,

(d) (xn) ∈ c⇒ ( f (xn)) ∈ ∆p(X),

(e) (xn) ∈ w⇒ ( f (xn)) ∈ ∆p(X),

where w denotes the set of slowly oscillating sequences. We see that (∆p(X)) is p-ward continuity of f , and
(c) states the ordinary continuity of f . It is easy to see that (∆p(X)c) implies (∆p(X)), and (∆p(X)) does not
imply (∆p(X)c); and (∆p(X)) implies (d), and (d) does not imply (∆p(X)); and (∆p(X)) implies (e), and (e) does
not imply (∆p(X)); (∆p(X)c) implies (c) and (c) does not imply (∆p(X)c); and (c) is equivalent to (d).
Now we give the implication (∆p(X)) implies (∆1(X)), i.e. any p-ward continuous function is 1-ward
continuous, i.e. ward continuous.

Theorem 3.10. If f is p-ward continuous on a subset E of X, then it is ward continuous on E.

Proof. Since the sequence (x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn, . . .) is p-quasi-Cauchy whenever (xn)
is quasi-Cauchy, we have that
( f (x1), f (x1), . . . , f (x1), f (x2), f (x2), . . . , f (x2), . . . , f (xn), f (xn), . . . , f (xn), . . .)
is p-quasi-Cauchy whenever (xn) is quasi-Cauchy where the same term repeats p-times. Therefore for every

c ∈
◦

K there exits an n0 ∈ N such that c − ρ( f (xn+1), f (xn) ∈
◦

K for n ≥ n0. This completes the proof of the
theorem.

Corollary 3.11. If f is p-ward continuous on a subset E of X, then it is sequentially continuous on E in the ordinary
case.

Proof. The proof can be obtained by using a technique analogous to that of Theorem 3.10, so is omitted.
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We note that [16, Corollary 3.3] is a special case of Corollary 3.11 for X = R, [8, Theorem 1] is a special
case of Corollary 3.11 for X = R with p = 1.

Now we prove that any uniformly continuous function is p-ward continuous for any p ∈N.

Theorem 3.12. If a function f is uniformly continuous on a subset E of X, then it is p-ward continuous on E for any
p ∈N.

Proof. To prove that f is p-ward continuous take any p-quasi-Cauchy sequence (xn) of points in E. Let c ∈
◦

K.

Uniform continuity of f implies that there exists a c0 ∈
◦

K, depending on c, such that ρ( f (x), f (y)) − c ∈
◦

K
whenever ρ(x, y) − c0 ∈

◦

K. For this c0, there exists an N = N(c0) = N1(c) such that ∆pxn − c0 ∈
◦

K, whenever

n > N where ∆pxn = ρ(xn+p, xn). Hence ∆p f (xn)− c ∈
◦

K if n > N, where ∆p f (xn) = ρ( f (xn+p), f (xn)). It follows
from this that ( f (xn)) is p-quasi-Cauchy. This completes the proof of the theorem.

Theorem 3.13. p-ward continuous image of any p-ward compact subset of R is p-ward compact.

Proof. The proof can be obtained straightforwardly so is omitted.

In the following theorem we see that p-ward continuity coincides with uniform continuity on totally
bounded subsets of a TVS-cone metric space.

Theorem 3.14. Any p-ward continuous function defined on a totally bounded subset E of X is uniformly continuous.

Proof. Suppose that f is not uniformly continuous on E so that there exist a c0 ∈
◦

K and sequences (xn)

and (yn) of points in E such that ρ(xn, yn) − c0
n ∈

◦

K and c0 − ρ( f (xn), f (yn)) <
◦

K for all n ∈ N. On the other
hand, by Theorem 3.4, E is p-ward compact, therefore there is a p-quasi-Cauchy subsequence of (xnk ) of (xn).
There is also a p-quasi-Cauchy subsequence of (ynkj

) of (ynk ) since E is p-ward compact. It is clear that the
corresponding sequence (xnkj

) is also p-quasi-Cauchy, since (ynkj
) is p-quasi-Cauchy and

ρ(xnkj
, xnkj+p

) − ρ(xnkj
, ynkj

) − ρ(ynkj
, ynkj+p

) − ρ(ynkj+p
, xnkj+p

) ∈ K.

It is easy to construct a sequence z = (z j) which is p-quasi-Cauchy while f (z) = ( f (z j)) is not p-quasi-Cauchy.
This contradiction completes the proof of the theorem.

Corollary 3.15. The set of p-ward continuous functions on a totally bounded subset E of X is equivalent to the set of
uniformly continuous functions on E.

Corollary 3.16. The set of slowly oscillating continuous functions on a totally bounded subset E of X is equivalent
to the set of p-ward continuous functions on E (see [18]).

When the domain is restricted to a totally bounded subset of X, p-ward continuity coincides with not
only ward continuity, but also uniform continuity.

Lemma 3.17. If (ξn, ηn) is a sequence of ordered pairs of points in a connected subset E of X such that limn→∞ ρ(ξn, ηn) =
0, then there exists a p-quasi-Cauchy sequence (xn) with the property that for any positive integer i there exists a
positive integer j such that (ξi, ηi) = (x j−p, x j).

Theorem 3.18. If f is p-ward continuous on a connected subset E of X for a positive integer p, then it is uniformly
continuous on E.
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Proof. Let p be any positive integer. To prove that p-ward continuity of f on E implies uniform continuity

of f on E suppose that f is not uniformly continuous on E so that there exists a c ∈
◦

K such that for any

δ ∈
◦

K, there exist x, y ∈ E with ρ(x, y) − δ ∈
◦

K but c − ρ( f (x), f (y)) <
◦

K. Hence for each n ∈ N, there exist

xn and yn in E such that ρ(xn, yn) − c
n ∈

◦

K, and c − ρ( f (xn), f (yn)) <
◦

K. By Lemma 3.17, one can construct
a p-quasi-Cauchy sequence (tn) which has a subsequence (zn) = (tkn ) such that limn→∞ ρ(zn+p, zn) = 0, but

c− ρ( f (zn+p), f (zn)) <
◦

K. Therefore the sequence ( f (zn)) is not p-quasi-Cauchy. Thus this contradiction yields
that p-ward continuity implies uniform continuity. This completes the proof of the theorem.

Combining Theorem 3.18 and Theorem 3.12 we have the following:

Corollary 3.19. A function f is uniformly continuous on a connected subset E if and only if it is p-ward continuous
for any p ∈N.

It is a well known result that uniform limit of a sequence of continuous functions is continuous. This
is also true in case p-ward continuity, i.e. uniform limit of a sequence of p-ward continuous functions is
p-ward continuous.

Theorem 3.20. If ( fn) is a sequence of p-ward continuous functions defined on a subset E of X, and ( fn) is uniformly
convergent to a function f , then f is p-ward continuous on E.

Proof. Let c ∈
◦

K, x ∈ X. Then there exists a positive integer N such that ρ( fn(x), f (x)) − c
3 ∈

◦

K for all x ∈ E
whenever n ≥ N. Let (xn) be a p-quasi-Cauchy sequence of points in E. Since fN is p-ward continuous, there

exists a positive integer N1, depending on c, and greater than N, such that ρ( fN(xn+p), fN(xn)) − c
3 ∈

◦

K for
n ≥ N1. Now for n ≥ N1, we have

ρ( f (xn+p), f (xn)) − ρ( f (xn+p), fN(xn+p)) + ρ( fN(xn+p), fN(xn)) − ρ( fN(xn), f (xn)) ∈
◦

K

and so ρ( f (xn+p), f (xn)) − c
3 −

c
3 −

c
3 ∈

◦

K, therefore ρ( f (xn+p), f (xn)) − c ∈
◦

K. This completes the proof of the
theorem.

Theorem 3.21. The set of all p-ward continuous functions defined on a subset E of X is a closed subset of the set of
all continuous functions on E, i.e. ∆p(X)FC(E) = ∆p(X)FC(E), where ∆p(X)FC(E) is the set of all p-ward continuous
functions on E, ∆p(X)FC(E) denotes the set of all cluster points of ∆p(X)FC(E).

Proof. Let f be any element in the closure of ∆p(X)FC(E). Then there exists a sequence of points in ∆p(X)FC(E)
such that limk→∞ fk = f . To show that f is p-ward continuous, take any p-quasi-Cauchy sequence (xn) of

points in E. Let c ∈
◦

K. Since ( fk) converges to f , there exists an N such that ρ( f (x), fn(x)) − c
3 ∈

◦

K for
all x ∈ E and for all n ≥ N. As fN is p-ward continuous, there is an N1, greater than N, such that

ρ( fN(xn+p), fN(xn)) − c
3 ∈

◦

K for all n ≥ N1. Hence

ρ( f (xn+p), f (xn)) − ρ( f (xn+p), fN(xn+p)) − ρ( fN(xn+p), fN(xn)) − ρ( f (xn), fN(xn)) ∈
◦

K

for all n ≥ N1, therefore ρ( f (xn+p), f (xn)) − c
3 −

c
3 −

c
3 ∈

◦

K, so ρ( f (xn+p), f (xn)) − c ∈
◦

K.
This completes the proof of the theorem.

Corollary 3.22. The set of all p-ward continuous functions on a subset E of R is a complete subspace of the space of
all continuous functions on E.

Proof. The proof follows from the preceding theorem.
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4. Conclusion

We introduce and investigate the notion of a p-quasi Cauchy sequence in a topological vector space
valued cone metric space. All results are new not only for a topological vector space valued cone metric
space, but also new for a metric space. It turns out that p-ward compactness coincides with total bound-
edness, and p-ward continuity coincides with uniform continuity both on a totally bounded subset, and on
a connected subset of X. We note that the results in this paper are also valid both in Banach space valued
cone normed spaces ([34]) and in topological vector space valued cone normed spaces as any topological
vector space valued cone normed space is a topological vector space valued cone metric space with the
induced topological vector space valued cone metric ρ(x, y) = |||x − y|||. For a further study, we suggest to
investigate p-quasi-Cauchy sequences of fuzzy points. However due to the change in settings, the defini-
tions and methods of proofs will not always be analogous to those of the present work (see [1, 17, 27] for the
definitions and related concepts in fuzzy setting). We also suggest to investigate p-quasi-Cauchy sequences
of double sequences (see [21] for the definitions and related concepts in the double case).
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