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Abstract. There are introduced and studied a pair of associated Schouten-van Kampen affine connec-
tions adapted to the contact distribution and an almost contact B-metric structure generated by the pair
of associated B-metrics and their Levi-Civita connections. By means of the constructed non-symmetric
connections, the basic classes of almost contact B-metric manifolds are characterized. Curvature properties
of the considered connections are obtained.

1. Introduction

In differential geometry of manifolds with additional tensor structures there are studied those affine
connections which preserve the structure tensors and the metric, known also as natural connections on the
considered manifolds.

We are interested in almost contact B-metric manifolds introduced in [4]. The geometry of three their
natural connections are studied in [7, 10, 12–14, 16].

The Schouten-van Kampen connection has been introduced for a studying of non-holonomic manifolds.
It preserves by parallelism a pair of complementary distributions on a differentiable manifold endowed
with an affine connection [1, 5, 20]. It is also used for investigations of hyperdistributions in Riemannian
manifolds (e.g., [21]).

On the other hand, any almost contact manifold admits a hyperdistribution, the known contact dis-
tribution. In [19], it is studied the Schouten-van Kampen connection adapted to an almost (para)contact
metric structure. On these manifolds, the studied connection is not natural in general because it preserves
the structure tensors except the structure endomorphism.

A counterpart of the almost contact metric structure is the almost contact B-metric structure. The B-
metric (unlike the compatible metric) restricted on the contact distribution is a Norden metric, i.e. the
structure endomorphism acts as an antiisometry (cf. an isometry for the compatible metric) on the contact
distribution. Other important characteristic of almost contact B-metric structure which differs it from the
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metric one is that the associated (0,2)-tensor of the B-metric is also a B-metric. This pair of B-metrics
generates a pair of Levi-Civita connections.

In the present paper, our goal is introducing and investigation of a pair of Schouten-van Kampen con-
nections which are associated to the pair of Levi-Civita connections and adapted to the contact distribution
of an almost contact B-metric manifold. Then, we characterize the classes of considered manifolds using
these connections and obtain some corresponding curvature properties.

2. Almost Contact B-Metric Manifolds

Let us consider an almost contact B-metric manifold denoted by (M, ϕ, ξ, η, 1). This means that M is a
(2n + 1)-dimensional (n ∈ N) differentiable manifold with an almost contact structure (ϕ, ξ, η), where ϕ
is an endomorphism of the tangent bundle TM, ξ is a Reeb vector field and η is its dual contact 1-form.
Moreover, M is equipped with a pseudo-Riemannian metric 1 of signature (n + 1,n), such that the following
algebraic relations are satisfied: [4]

ϕξ = 0, ϕ2 = −Id + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1, 1(ϕx, ϕy) = −1(x, y) + η(x)η(y),

where Id is the identity transformation. In the latter equality and further, x, y, z, w will stand for arbitrary
elements of X(M), the Lie algebra of tangent vector fields, or vectors in the tangent space TpM of M at an
arbitrary point p in M.

A classification of almost contact B-metric manifolds, which contains eleven basic classes F1, F2, . . . ,
F11, is given in [4]. This classification is made with respect to the tensor F of type (0,3) defined by

F(x, y, z) = 1
((
∇xϕ

)
y, z

)
,

where ∇ is the Levi-Civita connection of 1. The following identities are valid:

F(x, y, z) = F(x, z, y) = F(x, ϕy, ϕz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ),
F(x, ϕy, ξ) = (∇xη)y = 1(∇xξ, y). (1)

The special class F0, determined by the condition F = 0, is the intersection of the basic classes and it is
known as the class of the cosymplectic B-metric manifolds.

Let {ei; ξ} (i = 1, 2, . . . , 2n) be a basis of TpM and
(
1i j

)
be the inverse matrix of the matrix

(
1i j

)
of 1. Then

the following 1-forms are associated with F:

θ(z) = 1i jF(ei, e j, z), θ∗(z) = 1i jF(ei, ϕe j, z), ω(z) = F(ξ, ξ, z).

These 1-forms are known also as the Lee forms of the considered manifold. Obviously, the identities
ω(ξ) = 0 and θ∗ ◦ ϕ = −θ ◦ ϕ2 are always valid.

Further, we use the following characteristic conditions of the basic classes: [9]

F1 : F(x, y, z) = 1
2n

{
1(x, ϕy)θ(ϕz) + 1(ϕx, ϕy)θ(ϕ2z) + 1(x, ϕz)θ(ϕy) + 1(ϕx, ϕz)θ(ϕ2y)

}
;

F2 : F(ξ, y, z) = F(x, ξ, z) = 0, S
x,y,z

F(x, y, ϕz) = 0, θ = 0;

F3 : F(ξ, y, z) = F(x, ξ, z) = 0, S
x,y,z

F(x, y, z) = 0;

F4 : F(x, y, z) = − 1
2nθ(ξ)

{
1(ϕx, ϕy)η(z) + 1(ϕx, ϕz)η(y)

}
;

F5 : F(x, y, z) = − 1
2nθ

∗(ξ)
{
1(x, ϕy)η(z) + 1(x, ϕz)η(y)

}
;

F6 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = F(y, x, ξ) = −F(ϕx, ϕy, ξ), θ = θ∗ = 0;
F7 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = −F(y, x, ξ) = −F(ϕx, ϕy, ξ);
F8 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = F(y, x, ξ) = F(ϕx, ϕy, ξ);
F9 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = −F(y, x, ξ) = F(ϕx, ϕy, ξ);
F10 : F(x, y, z) = F(ξ, ϕy, ϕz)η(x);
F11 : F(x, y, z) = η(x)

{
η(y)ω(z) + η(z)ω(y)

}
.

(2)
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Using (1) and taking the traces with respect to 1 denoted by tr and the traces with respect to 1̃ denoted
by tr∗, we obtain the following relations

θ(ξ) = div∗(η), θ∗(ξ) = div(η), (3)

where div and div∗ denote the divergence using a trace by 1 and by 1̃, respectively.
As a corollary, the covariant derivative of ξ with respect to ∇ and the dual covariant derivative of η

because of (∇xη)(y) = 1(∇xξ, y) are determined in each class as follows

F1 : ∇ξ = 0; F2 : ∇ξ = 0; F3 : ∇ξ = 0; F4 : ∇ξ = 1
2n div∗(η)ϕ;

F5 : ∇ξ = − 1
2n div(η)ϕ2; F6 : 1(∇xξ, y) = 1(∇yξ, x) = −1(∇ϕxξ, ϕy), div(η) = div∗(η) = 0;

F7 : 1(∇xξ, y) = −1(∇yξ, x) = −1(∇ϕxξ, ϕy); F8 : 1(∇xξ, y) = −1(∇yξ, x) = 1(∇ϕxξ, ϕy);
F9 : 1(∇xξ, y) = 1(∇yξ, x) = 1(∇ϕxξ, ϕy); F10 : ∇ξ = 0; F11 : ∇ξ = η ⊗ ϕω],

(4)

where ] denotes the musical isomorphism of T∗M in TM given by 1.
The associated metric 1̃ of 1 on M is defined by 1̃(x, y) = 1(x, ϕy) + η(x)η(y). The manifold (M, ϕ, ξ, η, 1̃)

is also an almost contact B-metric manifold. The B-metric 1̃ is also of signature (n + 1,n). The Levi-Civita
connection of 1̃ is denoted by ∇̃. Let us denote the potential of ∇̃ regarding ∇ by Φ, i.e. Φ(x, y) = ∇̃xy−∇xy.
In [18], it is given a characterization of all basic classes in terms of Φ by means of the relations between F
and Φ known from [4]

F(x, y, z) = Φ(x, y, ϕz) + Φ(x, z, ϕy) + 1
2η(z){Φ(x, y, ξ) −Φ(x, ϕy, ξ) + Φ(ξ, x, y) −Φ(ξ, x, ϕy)}

+ 1
2η(y){Φ(x, z, ξ) −Φ(x, ϕz, ξ) + Φ(ξ, x, z) −Φ(ξ, x, ϕz)},

(5)

2Φ(x, y, z) = −F(x, y, ϕz) − F(y, x, ϕz) + F(ϕz, x, y) + η(x){F(y, z, ξ) + F(ϕz, ϕy, ξ)}
+ η(y){F(x, z, ξ) + F(ϕz, ϕx, ξ)} + η(z){−F(ξ, x, y) + F(x, y, ξ) + F(x, ϕy, ξ) − ω(ϕx)η(y)
+ F(y, x, ξ) + F(y, ϕx, ξ) − ω(ϕy)η(x)}.

(6)

In [8], it is given the relation between F and F̃(x, y, z) = 1̃((∇̃xϕ)y, z) as follows

2F̃(x, y, z) = F(ϕy, z, x) − F(y, ϕz, x) + F(ϕz, y, x) − F(z, ϕy, x)
+ η(x){F(y, z, ξ) + F(ϕz, ϕy, ξ) + F(z, y, ξ) + F(ϕy, ϕz, ξ)}
+ η(y){F(x, z, ξ) + F(ϕz, ϕx, ξ) + F(x, ϕz, ξ)} + η(z){F(x, y, ξ) + F(ϕy, ϕx, ξ) + F(x, ϕy, ξ)}.

(7)

Obviously, the special class F0 is determined by the following equivalent conditions: F = 0, Φ = 0, F̃ = 0
and ∇ = ∇̃.

The properties of ∇̃xξ when (M, ϕ, ξ, η, 1̃) is in each of the basic classes are determined in a similar way
as in (4).

3. Remarkable metric connections regarding the contact distribution on the considered manifolds

Let us consider an arbitrary almost contact B-metric manifold (M, ϕ, ξ, η, 1). Using the Reeb vector field
ξ and its dual contact 1-form η on M, we determine two distributions in the tangent bundle TM of M as
follows

H = ker(η), V = span(ξ).

Then the horizontal distributionH and the vertical distributionV form a pair of mutually complementary
distributions in TM which are orthogonal with respect to both of the metrics 1 and 1̃, i.e. H ⊕V = TM,
H ∩V = {o} (where o is the zero vector field) andH⊥V. The distributionH is known also as the contact
distribution.

Let us consider the corresponding horizontal and vertical projectors h : TM 7→ H and v : TM 7→ V.
Bearing in mind that x = −ϕ2x + η(x)ξ for an arbitrary vector x in TM, we use denotations xh and xv for the
corresponding horizontal and vertical projections of x by h and v, respectively. Then we have xh = −ϕ2x
and xv = η(x)ξ or equivalently

xh = x − η(x)ξ, xv = η(x)ξ. (8)
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3.1. The Schouten-van Kampen connection D associated to ∇
Let us consider the Schouten-van Kampen connection D associated to ∇ and adapted to the pair (H ,V).

This connection is defined (locally in [20], see also [5]) by

Dxy = (∇xyh)h + (∇xyv)v. (9)

The latter equality implies the parallelism ofH andV with respect to D. From (8) we obtain

(∇xyh)h = ∇xy − η(y)∇xξ − η(∇xy)ξ, (∇xyv)v = η(∇xy)ξ + (∇xη)(y)ξ.

Then we get the expression of the Schouten-van Kampen connection in terms of ∇ as follows (cf. [21])

Dxy = ∇xy − η(y)∇xξ + (∇xη)(y)ξ. (10)

According to (10), the potential Q of D with respect to ∇ and the torsion T of D, defined by Q(x, y) =
Dxy − ∇xy and T(x, y) = Dxy −Dyx − [x, y], respectively, have the following form

Q(x, y) = −η(y)∇xξ + (∇xη)(y)ξ, (11)
T(x, y) = η(x)∇yξ − η(y)∇xξ + dη(x, y)ξ. (12)

Theorem 3.1. The Schouten-van Kampen connection D is the unique affine connection having a torsion of the form
(12) and preserving the structures ξ, η and the metric 1.

Proof. Taking into account (10), we compute directly that the structures ξ, η and 1 are parallel with respect
to D, i.e. Dξ = Dη = D1 = 0. The connection D preserves the metric and therefore is completely determined
by its torsion T. According to [2], the two spaces of all torsions and of all potentials are isomorphic and the
bijection is given as follows

T(x, y, z) = Q(x, y, z) −Q(y, x, z), (13)
2Q(x, y, z) = T(x, y, z) − T(y, z, x) + T(z, x, y). (14)

Then, the connection D determined by (10) and its potential Q given in (11) are replaced in (13) to determine
its torsion T and the result is (12). Vice versa, the form of T in (12) yields by (14) the equality for D in
(10).

Obviously, the connection D exists on (M, ϕ, ξ, η, 1) in any class, but D coincides with ∇ if and only if
the condition η(y)∇xξ − (∇xη)(y)ξ = 0 holds. The latter equality is equivalent to vanishing of ∇xξ for any x.
This condition is satisfied only in the class F1 ⊕ F2 ⊕ F3 ⊕ F10. Let us denote this class briefly byU1. Thus,
we prove the following

Theorem 3.2. The Schouten-van Kampen connection D coincides with ∇ if and only if (M, ϕ, ξ, η, 1) belongs to the
classU1.

3.2. The conditions D to be natural for (ϕ, ξ, η, 1)
Using (10), we express the covariant derivative of ϕ as follows

(Dxϕ)y = (∇xϕ)y + η(y)ϕ∇xξ − η(∇xϕy)ξ. (15)

Therefore, Dϕ = 0 if and only if (∇xϕ)y = −η(y)ϕ∇xξ + η(∇xϕy)ξ, which by (1) yields

F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y). (16)

The latter condition determines the direct sum F4 ⊕ · · · ⊕ F9 ⊕ F11 which we denote by U2 for the sake
of brevity. Thus, we find the kind of the considered manifolds where D is a natural connection, i.e.
the tensors of the structure (ϕ, ξ, η, 1) are covariantly constant regarding D. In this case it follows that
(∇xϕ)ϕy =

(
∇xη

)
(y)ξ holds. Then the Schouten-van Kampen connection D coincides with the ϕB-connect-

ion∇∗ defined by∇∗xy = ∇xy+ 1
2
{
(∇xϕ)ϕy + (∇xη)(y) · ξ

}
−η(y)∇xξ. Such a way, we establish the truthfulness

of the following
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Theorem 3.3. The Schouten-van Kampen connection D is a natural connection for the structure (ϕ, ξ, η, 1) if and
only if (M, ϕ, ξ, η, 1) belongs to the classU2. Then D coincides with the ϕB-connection.

TheϕB-connection is studied for all main classesF1, F4, F5, F11 in [6, 7, 15–17] with respect to properties
of the torsion and the curvature as well as the conformal geometry. The restriction of the ϕB-connection
onH coincides with the B-connection on the corresponding almost complex Norden manifold, studied for
their main class in [3].

Let us remark that in the case when (M, ϕ, ξ, η, 1) belongs to a class which has a nonzero component
in both of the direct sums U1 and U2, then the connection D is not a natural connection and it does not
coincide with ∇. Then the class of all almost contact B-metric manifolds can be decomposed orthogonally
toU1 ⊕U2.

3.3. The Schouten-van Kampen connection D̃ associated to ∇̃

In a similar way as for D, let us consider the Schouten-van Kampen connection D̃ associated to ∇̃ and
adapted to the pair (H ,V). This connection we define as follows

D̃xy = (∇̃xyh)h + (∇̃xyv)v.

Then the hyperdistribution (H ,V) is parallel with respect to D̃, too. Analogously, we express the Schouten-
van Kampen connection D̃ in terms of ∇̃ by

D̃xy = ∇̃xy − η(y)∇̃xξ + (∇̃xη)(y)ξ. (17)

By virtue of (17), the potential Q̃ of D̃ with respect to ∇̃ and the torsion T̃ of D̃ have the following form

Q̃(x, y) = −η(y)∇̃xξ + (∇̃xη)(y)ξ, (18)

T̃(x, y) = η(x)∇̃yξ − η(y)∇̃xξ + dη(x, y)ξ. (19)

Similarly to Theorem 3.1 we have the following

Theorem 3.4. The Schouten-van Kampen connection D̃ is the unique affine connection having a torsion of the form
(19) and preserving the structures ξ, η and the associated metric 1̃.

It is clear that the connection D̃ exists on (M, ϕ, ξ, η, 1̃) in any class, but D̃ coincides with ∇̃ if and only if
the condition η(y)∇̃xξ − (∇̃xη)(y)ξ = 0 is valid or equivalently ∇̃ξ = 0. This condition holds if and only if F̃
satisfies the condition (2) of F for F1 ⊕F2 ⊕F3 ⊕F9, which we denote by Ũ1. Thus, we prove the following

Theorem 3.5. The Schouten-van Kampen connection D̃ coincides with ∇̃ if and only if (M, ϕ, ξ, η, 1̃) belongs to the
class Ũ1.

Taking into account (7), we establish immediately the truthfulness of

Lemma 3.6. (M, ϕ, ξ, η, 1) ∈ U1 if and only if (M, ϕ, ξ, η, 1̃) ∈ Ũ1.

Then, Theorem 3.2, Theorem 3.5 and Lemma 3.6 imply the following

Theorem 3.7. Let D and D̃ be the Schouten-van Kampen connections associated to∇ and ∇̃, respectively, and adapted
to the pair (H ,V) on (M, ϕ, ξ, η, 1, 1̃). Then the following assertions are equivalent:

(i) D coincides with ∇;
(ii) D̃ coincides with ∇̃;

(iii) (M, ϕ, ξ, η, 1) belongs toU1;
(iv) (M, ϕ, ξ, η, 1̃) belongs to Ũ1.
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Corollary 3.8. Let D and D̃ be the Schouten-van Kampen connections associated to ∇ and ∇̃, respectively, and
adapted to the pair (H ,V) on (M, ϕ, ξ, η, 1, 1̃). If D̃ ≡ ∇ or D ≡ ∇̃ then the four connections D, D̃, ∇ and ∇̃ coincide.
The coinciding of D, D̃, ∇ and ∇̃ is equivalent to the condition (M, ϕ, ξ, η, 1) and (M, ϕ, ξ, η, 1̃) to be cosymplectic
B-metric manifolds.

We obtain from (17) the following relation between D and D̃

D̃xy = Dxy + Φ(x, y) − η(Φ(x, y))ξ − η(y)Φ(x, ξ). (20)

It is clear that D̃ = D if and only if Φ(x, y) = η(Φ(x, y))ξ + η(y)Φ(x, ξ) which is equivalent to Φ(x, y) =
η(Φ(x, y))ξ + η(x)η(y)Φ(ξ, ξ) because Φ is symmetric. Using relation (5), we obtain condition (16) which
determines the classU2. Then, the following assertion is valid.

Theorem 3.9. The Schouten-van Kampen connections D̃ and D associated to ∇̃ and ∇, respectively, and adapted to
the pair (H ,V) coincide with each other if and only if the manifold belongs to the classU2.

3.4. The connection D̃ to be natural for (ϕ, ξ, η, 1̃)

Using (20), we have the following relation between the covariant derivatives of ϕ regarding D̃ and D

(D̃xϕ)y = (Dxϕ)y + Φ(x, ϕy) − ϕΦ(x, y) + η(y)ϕΦ(x, ξ) − η(Φ(x, ϕy))ξ. (21)

By virtue of the latter equality, we establish that D̃ϕ and Dϕ coincide if and only if the condition
Φ(x, ϕ2y, ϕ2z) = −Φ(x, ϕy, ϕz) holds. The latter condition is satisfied only when (M, ϕ, ξ, η, 1) is in the
classF3⊕U3, whereU3 denotes the direct sum F4⊕F5⊕F6⊕F7⊕F11. By direct computations we establish
that (M, ϕ, ξ, η, 1̃) belongs to the same class. Therefore, we obtain

Theorem 3.10. The covariant derivatives of ϕ with respect to the Schouten-van Kampen connections D and D̃
coincide if and only if both the manifolds (M, ϕ, ξ, η, 1) and (M, ϕ, ξ, η, 1̃) belong to the class F3 ⊕U3.

Using (6), (15) and (21), we obtain that D̃ϕ = 0 is equivalent to the condition

F(ϕy, ϕz, x) + F(ϕ2y, ϕ2z, x) − F(ϕz, ϕy, x) − F(ϕ2z, ϕ2y, x) = 0.

Then, by virtue of (2) we get the following

Theorem 3.11. The Schouten-van Kampen connection D̃ is a natural connection for the structure (ϕ, ξ, η, 1̃) if and
only if (M, ϕ, ξ, η, 1̃) belongs to the class F1 ⊕ F2 ⊕U3.

Consequently, bearing in mind Theorem 3.3, Theorem 3.10, Theorem 3.11, we have the validity of the
following

Theorem 3.12. The Schouten-van Kampen connections D and D̃ are natural connections on (M, ϕ, ξ, η, 1, 1̃) if and
only if (M, ϕ, ξ, η, 1) and (M, ϕ, ξ, η, 1̃) belong to the classU3.

4. Torsion properties of the pair of connections D and D̃

Since 1(ξ, ξ) = 1 implies 1(∇xξ, ξ) = 0, then we obtain ∇xξ ∈ H . The shape operator S : H 7→ H for the
metric 1 is defined by S(x) = −∇xξ.

Then, bearing in mind the relations between T, Q and S given in (11), (12), (13), (14), the properties of
the torsion, the potential and the shape operator for D are related. Analogously, similar linear relations
between the torsion, the potential and the shape operator for D̃ are valid.
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According to the expressions (11) and (12) of Q and T, respectively, their horizontal and vertical com-
ponents have the following form

Qh = −(∇ξ) ⊗ η, Qv = (∇η) ⊗ ξ, Th = η ∧ (∇ξ), Tv = dη ⊗ ξ. (22)

Then, in terms of S, the corresponding (0,3)-tensors Q(x, y, z) = 1(Q(x, y), z) and T(x, y, z) = 1(T(x, y), z) as
well as their horizontal and vertical components are

Q(x, y, z) = −π1(ξ,S(x), y, z), T(x, y, z) = −π1(ξ,S(x), y, z) + π1(ξ,S(y), x, z),

where

π1(x, y, z,w) = 1(y, z)1(x,w) − 1(x, z)1(y,w) (23)

and

Qh = S ⊗ η, Qv = −S� ⊗ ξ, Th = −η ∧ S, Tv = −2Alt(S�) ⊗ ξ, (24)

where S�(x, y) = 1(S(x), y) and Alt means the alternation.
By virtue of the equalities for the vertical components of Q and T in (22) and (24), we obtain immediately

Theorem 4.1. The following equivalences are valid:
(i) ∇η is symmetric⇔ η is closed, i.e. dη = 0⇔ Qv is symmetric⇔ Tv vanishes⇔ S is self-adjoint regarding 1
⇔ S� is symmetric⇔M ∈ U1 ⊕ F4 ⊕ F5 ⊕ F6 ⊕ F9;

(ii) ∇η is skew-symmetric ⇔ ξ is Killing with respect to 1, i.e. Lξ1 = 0 ⇔ Qv is skew-symmetric ⇔ S is
anti-self-adjoint regarding 1⇔ S� is skew-symmetric⇔M ∈ U1 ⊕ F7 ⊕ F8;

(iii) ∇η = 0⇔ dη = Lξ1 = 0⇔∇ξ = 0⇔ S = 0⇔ S� = 0⇔ D = ∇⇔M ∈ U1.

The horizontal and vertical components of Q̃ and T̃ of D̃ are respectively

Q̃h = −(∇̃ξ) ⊗ η, Q̃v = (∇̃η) ⊗ ξ, T̃h = η ∧ (∇̃ξ), T̃v = dη ⊗ ξ. (25)

From 1̃(ξ, ξ) = 1 we have 1̃(∇̃xξ, ξ) = 0 and therefore ∇̃ξ ∈ H . The shape operator S̃ : H 7→ H for the
metric 1̃ is defined by S̃(x) = −∇̃xξ.

Since (∇̃xη)(y) = (∇xη)(y) − η(Φ(x, y)) and ∇̃xξ = ∇xξ + Φ(x, ξ), then

S̃(x) = S(x) −Φ(x, ξ), S̃�(x, y) = S�(x, ϕy) −Φ(ξ, x, ϕy), (26)

where we denote S̃�(x, y) = 1̃(S̃(x), y) and S�(x, y) = 1(S(x), y). Moreover, (11), (12), (22), (18), (19) and (25)
imply the following relations

Q̃(x, y) = Q(x, y) − η(y)Φ(x, ξ) − η(Φ(x, y))ξ, T̃(x, y) = T(x, y) + η(x)Φ(y, ξ) − η(y)Φ(x, ξ);

Q̃h = Qh
− (ξyΦ) ⊗ η, Q̃v = Qv

− (η ◦Φ) ⊗ ξ, T̃h = Th + η ∧ (ξyΦ), T̃v = Tv.

Using the latter equalities and (26), we obtain the following formulae

Q̃ = Q + (S̃ − S) ⊗ η − (S̃� − S�) ⊗ ξ, T̃ = T + (S̃ − S) ∧ η;

Q̃h = Qh + (S̃ − S) ⊗ η, Q̃v = Qv
− (S̃� − S�) ⊗ ξ, T̃h = Th + (S̃ − S) ∧ η, T̃v = Tv.

Theorem 4.2. The following equivalences are valid:

(i) ∇̃η is symmetric ⇔ η is closed ⇔ Q̃v is symmetric ⇔ T̃v vanishes ⇔ S̃ is self-adjoint regarding 1̃ ⇔ S̃� is
symmetric⇔ (M, ϕ, ξ, η, 1̃) ∈ Ũ1 ⊕ F4 ⊕ F5 ⊕ F6 ⊕ F10;

(ii) ∇̃η is skew-symmetric ⇔ ξ is Killing with respect to 1̃, i.e. Lξ1̃ = 0 ⇔ Q̃v is skew-symmetric ⇔ S̃ is
anti-self-adjoint regarding 1̃⇔ S̃� is skew-symmetric⇔ (M, ϕ, ξ, η, 1̃) ∈ Ũ1 ⊕ F7;

(iii) ∇̃η = 0⇔ dη = Lξ1̃ = 0⇔ ∇̃ξ = 0⇔ S̃ = 0⇔ S̃� = 0⇔ D̃ = ∇̃ ⇔ (M, ϕ, ξ, η, 1̃) ∈ Ũ1.
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5. Curvature properties of the pair of connections D and D̃

Let R be the curvature tensor of ∇, i.e. R = [∇ ,∇ ] − ∇[ , ] and the corresponding (0, 4)-tensor is
determined by R(x, y, z,w) = 1(R(x, y)z,w). The Ricci tensor ρ and the scalar curvature τ are defined as
usual by ρ(y, z) = 1i jR(ei, y, z, e j) and τ = 1i jρ(ei, e j), where 1i j are the corresponding components of the
inverse matrix of 1with respect to an arbitrary basis {ei} (i = 1, . . . , 2n + 1) of TpM, p ∈M.

Each non-degenerate 2-plane α in TpM with respect to 1 and R has the following sectional curvature
k(α; p) = R(x, y, y, x)(π1(x, y, y, x))−1,where {x, y} is an arbitrary basis of α. A 2-plane α is said to be a ξ-section,
a ϕ-holomorphic section or a ϕ-totally real section if ξ ∈ α, α = ϕα or α⊥ϕα regarding 1, respectively. The latter
type of sections exist only for dim M ≥ 5.

In [11], some curvature properties with respect to ∇ are studied in several subclasses ofU2.
Let us denote the curvature tensor, the Ricci tensor, the scalar curvature and the sectional curvature

of the connection D by RD, ρD, τD and kD, respectively. The corresponding (0, 4)-tensor is determined by
RD(x, y, z,w) = 1(RD(x, y)z,w). Analogously, let the corresponding quantities for the connections ∇̃ and D̃
be denoted by R̃, ρ̃, τ̃, k̃ and RD̃, ρD̃, τD̃, kD̃, respectively. The corresponding (0, 4)-tensors of R̃ and RD̃ are
obtained by 1̃.

Theorem 5.1. The curvature tensors of D and ∇ (respectively, of D̃ and ∇̃) are related as follows

RD(x, y, z,w) = R
(
x, y, ϕ2z, ϕ2w

)
+ π1

(
S(x),S(y), z,w

)
,

RD̃(x, y, z,w) = R̃
(
x, y, ϕ2z, ϕ2w

)
+ π̃1

(
S̃(x), S̃(y), z,w

)
,

(27)

where π̃1 is constructed as in (23) by 1̃.

Proof. Using (10), we compute RD. Taking into account that 1(∇xξ, ξ) = 0 for any x and Dξ = 0, we obtain
the equality

RD(x, y)z = R(x, y)z − η(z)R(x, y)ξ − η(R(x, y)z)ξ − 1 (∇xξ, z)∇yξ + 1
(
∇yξ, z

)
∇xξ.

The latter equality implies the first relation in (27).
The second equality in (27) follows as above but in terms of D̃, ∇̃ and their corresponding metric 1̃.

Then, Theorem 5.1 has the following

Corollary 5.2. The Ricci tensors of D and ∇ (respectively, of D̃ and ∇̃) are related as follows

ρD(y, z) = ρ(y, z) − η(z)ρ(y, ξ) − R(ξ, y, z, ξ) − 1(S(S(y)), z) + tr(S)1(S(y), z),
ρD̃(y, z) = ρ̃(y, z) − η(z)ρ̃(y, ξ) − R̃(ξ, y, z, ξ) − 1̃(S̃(S̃(y)), z) + t̃r(S̃)1̃(S̃(y), z),

(28)

where t̃r denotes the trace with respect to 1̃.

Let us remark that we have tr(S) = t̃r(S̃) = −div(η), because of (3), the definitions of S and S̃ as well as
1i jΦ(ξ, ei, e j) = 0, using (6) and (1).

From the definition of the shape operator we get R(x, y)ξ = − (∇xS) y +
(
∇yS

)
x. Then, the latter formula

and S(ξ) = −∇ξξ = −ϕω] lead to the following expression of one of the components in the right-hand side
of (28)

R(ξ, y, z, ξ) = 1
((
∇ξS

)
y −

(
∇yS

)
ξ, z

)
= 1

((
∇ξS

)
y − ∇yS(ξ) − S(S(y)), z

)
.

Therefore, taking the trace of the latter equalities and using for the divergence of the 1-form ω ◦ ϕ the
relations div(ω ◦ ϕ) = 1i j (

∇eiω ◦ ϕ
)

e j = 1i j1
(
∇eiϕω

], e j

)
= −div(S(ξ)), we obtain

ρ(ξ, ξ) = tr(∇ξS) − div(S(ξ)) − tr(S2). (29)
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Similar equalities for the quantities with a tilde are valid with respect to 1̃, i.e.

ρ̃(ξ, ξ) = t̃r(∇̃ξS̃) − d̃iv(S̃(ξ)) − t̃r(S̃2). (30)

Bearing in mind the latter computations, from Corollary 5.2 we obtain the following

Corollary 5.3. The scalar curvatures of D and ∇ (respectively, of D̃ and ∇̃) are related as follows

τD = τ − 2ρ(ξ, ξ) − tr(S2) + (tr(S))2, τD̃ = τ̃ − 2ρ̃(ξ, ξ) − t̃r(S̃2) + (t̃r(S̃))2,

where ρ(ξ, ξ) and ρ̃(ξ, ξ) are expressed by S and S̃ in (29) and (30), respectively.

From Theorem 5.1 we obtain the following

Corollary 5.4. The sectional curvatures of an arbitrary 2-plane α at p ∈ M regarding D and ∇ (respectively, of D̃
and ∇̃) are related as follows

kD(α; p) = k(α; p) +
π1(S(x),S(y), y, x) − η(x)R(x, y, y, ξ) − η(y)R(x, y, ξ, x)

π1(x, y, y, x)
,

kD̃(α; p) = k̃(α; p) +
π̃1(S̃(x), S̃(y), y, x) − η(x)R̃(x, y, y, ξ) − η(y)R̃(x, y, ξ, x)

π̃1(x, y, y, x)
,

(31)

where {x, y} is an arbitrary basis of α.

If α is a ξ-section at p ∈ M denoted by αξ and {x, ξ} is its basis, then from (31) and 1(S(x), ξ) = 0 for any
x we obtain that the sectional curvature of α regarding D is zero, i.e. kD(αξ; p) = 0. Analogously, we have
kD̃(αξ; p) = 0.

If α is aϕ-section at p ∈M denoted by αϕ and {x, y} is its arbitrary basis, then from (31) and η(x) = η(y) = 0
we obtain that the sectional curvatures of αϕ regarding D and ∇ are related as follows

kD(αϕ; p) = k(αϕ; p) +
π1(S(x),S(y), y, x)
π1(x, y, y, x)

.

Analogously, we have

kD̃(αϕ; p) = k̃(αϕ; p) +
π̃1(S̃(x), S̃(y), y, x)
π̃1(x, y, y, x)

.

If α is a ϕ-totally real section orthogonal to ξ denoted by α⊥ and {x, y} is its arbitrary basis, then from (31)
and η(x) = η(y) = 0 we obtain that the sectional curvatures of α⊥ regarding D and ∇ are related as follows

kD(α⊥; p) = k(α⊥; p) +
π1(S(x),S(y), y, x)
π1(x, y, y, x)

.

Analogously, we have

kD̃(α⊥; p) = k̃(α⊥; p) +
π̃1(S̃(x), S̃(y), y, x)
π̃1(x, y, y, x)

.

In the case whenα is aϕ-totally real section non-orthogonal to ξ regarding 1 or 1̃, the relation between the the
corresponding sectional curvatures regarding D and ∇ (respectively, D̃ and ∇̃) is just the first (respectively,
the second) equality in (31).

The equalities in the present section are specialised for the considered manifolds in the different classes
since S and S̃ have a special form in each class, bearing in mind (4).
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