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Infinitesimal Bending Influence on the Willmore Energy of Curves
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Abstract. In this paper we study the change of the Willmore energy of curves, as a special case of so-called
Helfrich energy, under infinitesimal bending determined by the stationarity of arc length. We examine the
variation of the unit tangent, principal normal and binormal vector fields, the curvature and the torsion of
the curve. We obtain an explicit formula for calculating the variation of the Willmore energy, as well as the
Euler-Lagrange equations describing equilibrium. We find an infinitesimal bending field for a helix and
compute the variation of its Willmore energy under such infinitesimal bending.

1. Introduction

Let C : r = r(s) ( r : I 7→ R3), I ⊆ R, be a regular curve of the class Cα, α ≥ 2. The Helfrich energy of the
curve C is given by

Hλ(C) =
1
2

∫
I

(k − c0)2 ds + λL(C), (1)

where k = r′′ · n1 denotes the scalar curvature of the curve, n1 is the unit principal normal, s denotes the arc
length and L(C) =

∫
I

ds the length of C. The map c0 : I 7→ R is called spontaneous curvature. The constant
λ ∈ R is taken to be positive, so that the growth in length of a curve is penalized. The above functional is
motivated by the modeling of cell membranes [5].

The special case where c0 = 0 and λ = 0 is known as Willmore energy

W(C) =
1
2

∫
I

k2 ds, (2)

and it can also be historically motivated by the so-called Euler-Bernoulli model of elastic rods [12]. Willmore
energy penalizes bending models the stiffness of a polymer, and it has been used to model the elastic
properties of DNA [2].

The Helfrich and Willmore energies are mathematically very interesting and in particular the Willmore
flow is nowadays considered to be one of the most important models in which fourth order PDEs appear.
Both functionals have been extensively investigated analytically and numerically in recent years and the
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literature is by now rather vast. In [3] the authors study the long-time evolution of regular open curves
in Rn, n ≥ 2, moving according to the L2-gradient flow for a generalization of the Helfrich functional. In
[2], the authors examine the equilibrium conditions of a curve in space when a local energy penalty is
associated with its extrinsic geometrical state characterized by its curvature and torsion. To do this they
tailor the theory of deformations to the Frenet-Serret frame of the curve. Many papers are related to the
Willmore energy of surfaces (see [6], [19], [20], ...)

2. Infinitesimal bending of a curve in R3

We begin by studying infinitesimal bending of a curve. More information about infinitesimal bending of
the curves and the surfaces one can get from [1, 4, 7, 13], [14]-[20]. The concept on infinitesimal deformations
of curves in the spaces with linear connection is given in [21]. Infinitesimal rigidity and flexibility of a non-
symmetric affine connection space is considered in [8], [9], [10], [18].

Definition 2.1. Let us consider continuous regular curve

C : r = r(u), u ∈ J ⊆ R (3)

included in a family of the curves

Cε : r̃(u, ε) = rε(u) = r(u) + εz(u), u ∈ J, ε ∈ (−1, 1), (4)

where u is a real parameter and we get C for ε = 0 (C = C0). Family of curves Cε is infinitesimal bending of a
curve C if

ds2
ε − ds2 = o(ε), (5)

where z = z(u) , z ∈ C1 is infinitesimal bending field of the curve C.

Theorem 2.2. [4] Necessary and sufficient condition for z(u) to be an infinitesimal bending field of a curve C is to be

dr · dz = 0, (6)

where · stands for the scalar product in R3. �

Theorem 2.3. [15] Infinitesimal bending field for the curve C is

z(u) =

∫
[p(u)n1(u) + q(u)n2(u)] du, (7)

where p(u) and q(u), are arbitrary integrable functions and vectors n1(u) and n2(u) are respectively unit principal
normal and binormal vector fields of the curve C. �

Under infinitesimal bending of the surfaces each line element gets non-negative addition (see [13]). Let
us prove an analogous theorem which holds for the curves.

Theorem 2.4. Under infinitesimal bending of the curves each line element gets non-negative addition, which is the
infinitesimal value of the order higher than the first with respect to ε, i. e.

dsε − ds = o(ε) ≥ 0. (8)
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Proof. As

dr = ṙ(u)du, dz = ż(u)du,

according to (6), for infinitesimal bending field of a curve C we have

ṙ(u) · ż(u) = 0, (9)

where dot denotes derivative with respect to u. Based on that we have

dsε = ‖ṙε(u)‖ du = ‖ṙ(u) + εż(u)‖ du = (‖ṙ(u)‖2 + ε2
‖ż(u)‖2)

1
2 du

= ‖ṙ(u)‖
(
1 + ε2 ‖ż(u)‖2

‖ṙ(u)‖2
) 1

2 du = ds
(
1 + ε2 ‖ż(u)‖2

‖ṙ(u)‖2
) 1

2

After using the Maclaurin formula we get

dsε = ds
(
1 + ε2 ‖ż(u)‖2

2‖ṙ(u)‖2
− ε4 ‖ż(u)‖4

8‖ṙ(u)‖4
+ . . .

)
i.e.

dsε − ds = ε2 ‖ż(u)‖2

2‖ṙ(u)‖2
− . . . ,

which leads to (8). �

A curve parameterized by the arc length. Consider a regular curve

C : r = r(s) = r[u(s)], s ∈ I, (10)

of the class Cα, α ≥ 3, parameterized by the arc length s. The unit tangent to the curve is given by t = r′,
where prime denotes a derivative with respect to arc length s. Clearly, t′ is orthogonal to t, but t′′ is not.
The Frenet equations

t′ = kn1,

n′1 = −kt + τn2,

n′2 = −τn1,

(11)

describe the construction of an orthonormal basis {t,n1,n2} along a curve, where n1 and n2 are respectively
unit principal normal and binormal vector fields of the curve. We choose an orientation with n2 = t × n1. k
and τ are respectively the curvature and the torsion.

Consider an infinitesimal bending of the curve (10),

Cε : r̃(s, ε) = rε(s) = r(s) + εz(s). (12)

As the vector field z is defined in the points of the curve (10), it can be presented in the form

z = zt + z1n1 + z2n2, (13)

where zt is tangential and z1n1 + z2n2 is normal component, z, z1, z2 are the functions of s.

Theorem 2.5. Necessary and sufficient condition for the field z, (13), to be infinitesimal bending field of the curve C,
(10), is

z′ − kz1 = 0, (14)

where k is the curvature of C.
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Proof. According to (6), the necessary and sufficient condition for the field z to be infinitesimal bending
field of the curve C is

r′ · z′ = 0, (15)

i. e. t · z′ = 0. Substituting Eq. (13) into the previous equation and using Frenet equations (11), we obtain
(14). �

3. Change of geometric magnitudes under infinitesimal bending of curves

Geometric magnitudes are changing under infinitesimal bending and that changing is described by the
variation of a geometric magnitude. We define the variations of the geometric magnitudes according to
[13].

Definition 3.1. Let A = A(u) be the magnitude that characterizes a geometric property on the curve C and
Aε = Aε(u) the corresponding magnitude on the curve Cε being infinitesimal bending of the curve C,

∆A=Aε −A=ε δA + ε2 δ2
A + . . . εn δn

A + . . . (16)

Coefficients δA, δ2
A, . . . , δn

A, . . . are the first, the second, ..., the nth variation of the geometric magnitude A,
respectively under infinitesimal bending Cε of the curve C.

In this paper we will consider the first variations under infinitesimal bending of the first order. For this
reason, we can represent the magnitudeAε as

Aε = A + ε δA,

by neglecting the terms of order higher than 1.
Obviously, for the first variation is effective

δA=
d
dε
Aε(u)

∣∣∣
ε=0
, (17)

i. e.

δA = lim
ε→0

∆A

ε
= lim

ε→0

Aε(u) −A(u)
ε

. (18)

It is easy to prove that (see [17])

a) δ(AB) = AδB +BδA, b) δ
(∂A
∂u

)
=
∂(δA)
∂u

, c) δ(dA) = d(δA). (19)

Let us describe the behavior of some geometric magnitudes under infinitesimal bending of a curve.

Lemma 3.2. Under infinitesimal bending of the curve C, (10), a unit vector of the orthonormal basis and its variation
are orthogonal.

Proof. The condition that the unit tangent vector remains unit after bending tε · tε = 1, i. e.

(t + ε δt) · (t + ε δt) = 1

shows that t · δt = 0, after neglecting the terms of order higher than 1. Similarly we show the statement for
n1 and n2. �

Note that the above statement is true for an arbitrary unit vector.
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Lemma 3.3. Under infinitesimal bending of the curve C, (10), variation of the line element ds is equal to zero, i. e.

δ(ds) = 0. (20)

Proof. Let us consider the curve (10). We conclude that

dr = r′(s) ds = t ds,

i. e. after scalar product of previous equation with t,

t · dr = ds.

Applying Leibniz’s law and the fact that differential and variation are commutative (19) and Lemma 3.2,
we have

δ(ds) = δt ·dr + t ·δ(dr) = δt · r′ ds + t ·d(δr) = δt · t ds + t ·dz = t · (dz t + z dt + dz1 n1 + z1 dn1 + dz2 n2 + z2 dn2)

Using Frenet equations we obtain

δ(ds) = (z′ − kz1) ds, (21)

which, due to (14), gives (20). �

Lemma 3.4. Under infinitesimal bending of the curve C, (10), variation of the unit tangent vector is

δt = (z′1 − τz2 + kz) n1 + (z′2 + τz1) n2. (22)

Proof. As it is δt = δr′ = (δr)′ = z′, using (13), (14) and Frenet equations we obtain (22). �

Lemma 3.5. Under infinitesimal bending of the curve C, (10), variations of the unit principal normal and binormal
vectors are respectively

δn1 = −(kz + z′1 − τz2)t +
1
k

(kτz + z′′2 − τ
2z2 + 2τz′1 + τ′z1)n2, (23)

δn2 = −(z′2 + τz1)t −
1
k

(kτz + z′′2 − τ
2z2 + 2τz′1 + τ′z1)n1. (24)

Proof. The unit normal vector remains unit after infinitesimal bending, which means n1ε · n1ε = 1, i. e.
(n1 + εδn1) · (n1 + εδn1) = 1 and gives

n1 · δn1 = 0. (25)

Also, the unit normal vector remains perpendicular to the unit tangent vector, n1ε · tε = 0, i. e. (n1 + εδn1) ·
(t + εδt) = 0, wherefrom we have

t · δn1 = −n1 · δt = −(z′1 − τz2 + kz). (26)

Further, we take a variation of the first of (11),

δt′ = n1δk + kδn1. (27)

Dotting with n2 we obtain n2 · δn1 = 1
k n2 · δt′. To evaluate δt′ we apply commutativity of the variation and

the derivative and obtain δt′ = (δt)′. Based on (22), Frenet equations and z′ = kz1 (due to (14)), one obtains

δt′ = −k(kz + z′1 − τz2) t + (k′z + z′′1 + (k2
− τ2)z1 − 2τz′2 − τ

′z2) n1 + (kτz + 2τz′1 + τ′z1 + z′′2 − τ
2z2) n2. (28)
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Now we have

n2 · δn1 =
1
k

(kτz + 2τz′1 + τ′z1 + z′′2 − τ
2z2) (29)

Comparing (25), (26) and (29) we obtain (23). Similarly, from the conditions n2ε · n2ε = 1, n2ε · tε = 0 and
n2ε · n1ε = 0 we obtain (24). �

Lemma 3.6. Under infinitesimal bending of the curve C, (10), variation of the curvature is

δk = k′z + z′′1 + (k2
− τ2)z1 − 2τz′2 − τ

′z2. (30)

Proof. Dotting Eq. (27) with n1 and using Lemma 3.2, we obtain δk = n1 · δt′. This leads to (30) after using
(28). �

Corollary 3.7. Under infinitesimal bending of a plane curve, variation of the curvature is

δk = k′z + z′′1 + k2z1. (31)

Lemma 3.8. Under infinitesimal bending of the curve C, (10), variation of the torsion is

δτ = zτ′ + k(z′2 + 2τz1) +
{1

k

[
2τz′1 + τ′z1 + z′′2 − τ

2z2

]}′
. (32)

Proof. Let us take a variation of the Frenet equation for n′1 and dot with n2. We have

δτ = kn2 · δt + n2 · δn′1. (33)

We now rewrite the second term on the right hand side as

n2 · δn′1 = (n2 · δn1)′ − n′2 · δn1 = (n2 · δn1)′, (34)

after using the third Frenet equation and the Lema 3.2. As it is r′′ = kn1, we have t′ = kn1, i. e. n′1 = 1
k t′.

Farther, δn1 = δ( 1
k ) t′ + 1

k δt′,

n2 · δn1 = n2 ·
[
δ(

1
k

) kn1 +
1
k
δt′

]
=

1
k

n2 · δt′. (35)

From (33), (34) and (35) we obtain

δτ = kn2 · δt +
(1

k
n2 · δt′

)′
(36)

Substituting (22) and (28) into (36) and using (14) we obtain (32). �

Corollary 3.9. Under infinitesimal bending of a plane curve, variation of the torsion is

δτ = kz′2 +
(1

k
z′′2

)′
. (37)

Based on the lemmas that precede, corresponding geometric magnitudes of deformed curves under
infinitesimal bending are:

t̃ = tε = t + ε
[
(z′1 − τz2 + kz) n1 + (z′2 + τz1) n2

]
,

ñ1 = n1ε = n1 + ε
[
− (kz + z′1 − τz2)t +

1
k

(kτz + z′′2 − τ
2z2 + 2τz′1 + τ′z1)n2

]
,

ñ2 = n2ε = n2 + ε
[
− (z′2 + τz1)t −

1
k

(kτz + z′′2 − τ
2z2 + 2τz′1 + τ′z1)n1

]
,

k̃ = kε = k + ε[k′z + z′′1 + (k2
− τ2)z1 − 2τz′2 − τ

′z2],

τ̃ = τε = τ + ε
{
zτ′ + k(z′2 + 2τz1) +

[1
k

(
2τz′1 + τ′z1 + z′′2 − τ

2z2

)]′}
.

(38)

after neglecting the terms of order higher than 1.
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4. The change of the Willmore energy under infinitesimal bending

Let a regular curve of the class Cα, α ≥ 3, be given with

C : r = r(s), s ∈ I, (r : I 7→ R3), (39)

The Willmore energy of the curve C is given with the following equation

W =
1
2

∫
I

k2 ds. (40)

The next theorem is related to determination of the Willmore energy of curve under infinitesimal bending.

Theorem 4.1. Under infinitesimal bending of the curve C, (39), variation of its Willmore energy is

δW =

∫
I

ds
[
(k′′ +

1
2

k3
− kτ2)z1 + (2k′τ + kτ′)z2

]
+

∫
I

ds
[1
2

k2z − k′z1 + kz′1 − 2kτz2

]′
. (41)

Proof. The Willmore energy of deformed curve will be

Wε =
1
2

∫
I

k2
ε dsε =

1
2

∫
I

(k + ε δk)2[ds + ε δ(ds)], (42)

i. e.

Wε =W + ε
[ ∫
I

k δk ds +
1
2

∫
I

k2 δ(ds)
]
. (43)

According to Lemma 3.3 we obtain that

Wε =W + ε

∫
I

k δk ds, (44)

i. e.

δW =

∫
I

k δk ds, (45)

Applying (30) we get

δW =

∫
I

k[k′z + z′′1 + (k2
− τ2)z1 − 2τz′2 − τ

′z2] ds. (46)

As it is (kz′1)′ = k′z′1 + kz′′1 , we have

kz′′1 = (kz′1)′ − k′z′1. (47)

Also it is (k′z1)′ = k′′z1 + k′z′1, i. e.

−k′z′1 = k′′z1 − (k′z1)′. (48)

From (47) and (48) follows the equation

kz′′1 = (kz′1)′ + k′′z1 − (k′z1)′. (49)

Further, (−2τz2k)′ = −2τ′z2k − 2τz′2k − 2τz2k′, or

−2τz′2k = (−2τz2k)′ + (2τk)′z2. (50)

Also, using (14), we obtain

kk′z = (
1
2

k2z)′ −
1
2

k2z′ = (
1
2

k2z)′ −
1
2

k3z1. (51)

Substituting (49), (50) and (51) into (46) we have (41). �
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Corollary 4.2. The Willmore energy of deformed curve under infinitesimal bending is

Wε =W + ε
{ ∫
I

ds
[
(k′′ +

1
2

k3
− kτ2)z1 + (2k′τ + kτ′)z2

]
+

∫
I

ds
[1
2

k2z − k′z1 + kz′1 − 2kτz2

]′}
. (52)

Corollary 4.3. Under infinitesimal bending of a plane curve, variation of its Willmore energy is

δW =

∫
I

ds (k′′ +
1
2

k3)z1 +

∫
I

ds
[1
2

k2z − k′z1 + kz′1
]′
. (53)

From the equation (41) we can see that the second integral is an integral of a total derivative. Also, we
get the Euler-Lagrange equations

k′′ +
1
2

k3
− kτ2 = 0, (54)

2k′τ + kτ′ = 0. (55)

These are the governing equations of the curve that minimize the integral (41). Integrating the second one
gives

τk2 = const, (56)

which determines τ as a function of k. We substitute τ from (56) into (54) and get a second order differential
equation for k. It is clear that the Euler-Lagrange equations (54) and (55) are integrable, τ is given as a
function of k, k is determined as a quadrature.

Example 4.1. Let us examine infinitesimal bending of a helix parameterized by the arc length

C : r = (
√

2 cos
s
2
,
√

2 sin
s
2
,

√
2s
s

), s ∈ I = [a, b]. (57)

The vector fields of the orthonormal basis are

t =r′ =
(
−

√
2

2
sin

s
2
,

√
2

2
cos

s
2
,

√
2

2

)
,

n1 =
r′′

‖r′′‖
=

(
− cos

s
2
,− sin

s
2
, 0

)
,

n2 =t × n1 =
( √2

2
sin

s
2
,−

√
2

2
cos

s
2
,

√
2

2

)
.

(58)

The curvature and the torsion are respectively

k = ‖r′′‖ =

√
2

4
, τ =

√
2

4
. (59)

According to Theorem 2.3, for p = q = 1 we obtain infinitesimal bending field for C in the form

z =
(
− 2 sin

s
2
−

√

2 cos
s
2
, 2 cos

s
2
−

√

2 sin
s
2
,

√
2s

2

)
.

Let us decompose vector field z through the orthonormal basis, as in the Eq. (13). We obtain

z =
s + 2

√
2

2
t +
√

2n1 +
s − 2

√
2

2
n2. (60)

Applying Theorem 4.1 we obtain that δW = 1
8 (a − b).
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[11] S. R. Rančić, Lj. S. Velimirović, M. Lj. Zlatanović, Curvebend graphical tool for presentation of infinitesimal bending of curves,

Filomat 23(2) (2009) 108-116.
[12] C. Truesdell, The influence of elasticity on analysis: the classic heritage, J. Bull. Amer. Math. Soc. (N. S.) 9(3) (1983) 293–310.
[13] I. Vekua, Obobschennye analiticheskie funkcii, Moskva, 1959.
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