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The Kurepa-Vandermonde matrices arising from Kurepa’s left factorial
hypothesis

Romeo Meštrovića

aMaritime Faculty, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro

Abstract. Kurepa’s (left factorial) hypothesis asserts that for each integer n ≥ 2 the greatest common
divisor of !n :=

∑n−1
k=0 k! and n! is 2. It is known that Kurepa’s hypothesis is equivalent to

p−1∑
k=0

(−1)k

k!
. 0 (mod p) for each odd prime p,

or equivalently, Sp−1 . 0(mod p) (i.e., Bp−1 . 1(mod p)) for each odd prime p, where Sp−1 and Bp−1 are
the (p − 1)th derangement number and the (p − 1)th Bell number, respectively. Motivated by these two
reformulations of Kurepa’s hypothesis and a congruence involving the Bell numbers and the derangement
numbers established by Z.-W. Sun and D. Zagier [28, Theorem 1.1], here we give two “matrix” formulations
of Kurepa’s hypothesis over the field Fp, where p is any odd prime. The matrices Vp and Cp which are
involved in these “matrix” formulations of Kurepa’s hypothesis are the square (p−1)×(p−1) Vandermonde-
like matrices. Accordingly, Vp and Cp are called the Kurepa-Vandermonde matrices. Furthermore, for each
odd prime p we determine det(Vp) and det(Cp) in the field Fp.

1. Remarks on Kurepa’s hypothesis

In 1971 Dj. Kurepa [12] introduced the left factorial function !n which is defined as

!0 = 0, !n =

n−1∑
k=0

k!, n ∈N.

!n is the Sloane’s sequence A003422 in [25].
For more details of the following conjecture proposed by Kurepa in [12] and its reformulations see a

overview of A. Ivić and Ž. Mijajlović [8].

Conjecture 1.1 (Kurepa’s left factorial hypothesis). For each positive integer n ≥ 2 the greatest common divisor
of !n and n! is 2.
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Kurepa’s hypothesis and its equivalent formulation appear in R. Guy’s classic book [7] as problem B44
which asserts that

!n . 0 (mod n) for all n > 2.

Alternating sums of factorials
∑n−1

k=1 (−1)k−1k! are involved in Problem B43 in [7] which was solved by M.
Živković [32].

Further, Kurepa’s hypothesis was tested by computers for n < 1000000 by Mijajlović and Gogić in 1991
(see, e.g., [17] and [11]).

Kurepa’s left factorial hypothesis (or in the sequel, written briefly Kurepa’s hypothesis) is an unsolved
problem since 1971 and there seems to be no significant progress in solving it. Notice that a published
proof of Kurepa’s hypothesis in 2004 by D. Barsky and B. Benzaghou [1, Théorème 3, p. 13] contains some
irreparable calculation errors in the proof of Theorem 3 of this article, and this proof is therefore withdrawn
[2].

However, there are several statements equivalent to Kurepa’s hypothesis (see, e.g., Kellner [10, Con-
jecture 1.1 and Corollary 2.3], Ivić and Mijajlović [8], Mijajlović [16, Theorem 2.1], Petojević [21] and [22,
Subsection 3.3], Petojević, Žižović and Cvejić [23, Theorems 1 and 2], Šami [30], Stanković [26] and Živković
[32]). Moreover, there are numerous identities involving the left factorial function !n and related gener-
alizations (see Carlitz [3], Milovanović [18], Petojević and Milovanović [19], Slavić [24], Stanković [26],
Stanković and Žižović [27]). Kurepa’s hypothesis is closely related to the Sloane’s sequences A049782,
A051396, A051397, A052169, A052201, A054516 and A056158 [25].

It was proved by Dj. Kurepa [12, p. 149, Theorem 2.4] that Kurepa’s hypothesis is equivalent to the
assertion that !p . 0(mod p) for all odd primes p. This reformulation was modified by Ž. Mijajlović [12, p.
149, Theorem 2.4] who proved that Kurepa’s hypothesis is equivalent to the assertion that

p−1∑
k=0

(−1)k

k!
. 0 (mod p) for each prime p ≥ 3. (1)

Usually, here as always in the sequel, for rational numbers a/b and c/d such that the integers b and d are not
divisible by a prime p, the congruence a/b ≡ c/d(mod p) means that ad − bc ≡ 0(mod p).

Notice that

Sn = n!
n∑

k=0

(−1)k

k!
, n = 0, 1, 2, . . . (3)

is the subfactorial function whose values are the well known derangement numbers which give the number
of permutations of n elements without any fixpoints (Sloane’s sequence A000166 in [25] whose terms
S0,S1, . . . ,S8 are as follows: 1, 0, 1, 2, 9, 44, 265, 1854, 14833). In Mathematica 8 the code Subfactorial[n]
gives the derangement number Sn.

Furthermore, by Wilson theorem, for any prime p we have,

Sp−1 ≡ −

p−1∑
k=0

(−1)k

k!
(mod p). (4)

Remark 1.2. In 1999 M. Živković [32, Table 1] verified that Sp−1 :=
∑p−1

k=0(−1)k/k! . 0(mod p) for all odd primes p
less than 223 = 8388608. Searching for the rp := Sp−1( mod p) for all primes p less than 226 = 67108864 and less than
227 = 134217728, was continued in 2000 by Y. Gallot [5], and in 2004 by P. Jobling [9], respectively. M. Tatarević
[31] continued the search of the rp up to p < 109. By all these computational searches, no solution to Sp−1 ≡ 0( mod p)
was discovered.

Notice also that under the validity of heuristic arguments presented in [14, Remarks 1], based on a classical
asymptotic formula of Mertens (see, e.g., [4, p. 94]) and “log log philosophy” (see, e.g., [13]), it can be expected
one prime less than 1019 which is “a counterexample” to Kurepa’s hypothesis (i.e., one prime p < 1019 for which
Sp−1 ≡ 0(mod p)).
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A motivation for the notion of Kurepa’s determinant (see [14]) comes from the above equivalent form
of Kurepa’s hypothesis due to Mijajlović [16]. Using a Linear Algebra approach to the system of p − 2
homogeneous linear congruences modulo a prime p ≥ 5 involving the derangement numbers S1,S2, . . . ,Sp−2,
in [14] and [15] the author of this article defined the so-called Kurepa’s determinant Kn for every integer
n ≥ 7. Namely, by [14, Section 2, Definition 1] for any integer n ≥ 7 the Kurepa’s determinant Kn of order n− 4
is defined as

Kn :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 . . . 1 1 1 1 3
3 1 1 1 1 1 . . . 1 1 1 1 2
1 4 1 1 1 1 . . . 1 1 1 1 2
0 1 5 1 1 1 . . . 1 1 1 1 2
0 0 1 6 1 1 . . . 1 1 1 1 2
0 0 0 1 7 1 . . . 1 1 1 1 2
0 0 0 0 1 8 . . . 1 1 1 1 2
...

...
...

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 . . . 0 1 n − 4 1 2
0 0 0 0 0 0 . . . 0 0 0 1 −4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5)

The Kurepa’s determinant Kn with n ≥ 7 is given by N.J.A. Sloane as the OEIS sequence A236401 [25],
where its computation is implemented in Maple. For computations of the Kurepa’s determinants K2n+5 (of
odd order 2n + 1) it is used in [14] a code in Mathematica 8.

Remark 1.3. It is proved in [15] (also see [14, Theorem 1]) that Kurepa’s hypothesis is equivalent with the assertion
that Kp . 0(mod p) for all primes p ≥ 7.

In the first version of the paper [14] it is proposed the following conjecture [14, Conjecture 2] which
in view of Remark 1.3 implies Kurepa’s hypothesis, and thus it may be considered as the strong Kurepa’s
hypothesis.

Conjecture 1.4 (The strong Kurepa’s hypothesis). For each integer n ≥ 7 the Kurepa’s determinant Kn is not
divisible by n.

It is proved in [14, Theorem 2] that the strong Kurepa’s hypothesis holds for each even integer n ≥ 8. On the
other hand, it is showed in [14, Theorem 3] that for n = 11563 = 31 × 373 we have K11563 ≡ 0(mod 11563),
and hence, “the odd composite part” of strong Kurepa’s hypothesis is not true. The “prime” part of strong
Kurepa’s hypothesis asserts that Kp . 0(mod p) for each prime p > 5. This part is by [14, Proposition 1 and
Theorem 1] (which is proved in [15]) equivalent to Kurepa’s hypothesis.

2. The main results

The derangement numbers Sn defined by (3) are closely related to the Bell numbers Bn given by the
recurrence

Bn+1 =

n∑
k=0

(
n
k

)
Bk, n = 0, 1, 2, . . . ,

with B0 = 1 (see, e.g., [6, p. 373]). Bn gives the number of partitions of a set of cardinality n. This is
Sloane’s sequence A000110 in [25] whose terms B0,B1, . . . ,B8 are as follows: 1, 1, 2, 5, 15, 52, 203, 877, 4140.
In Mathematica 8 the code BellB[n] gives the Bell number.

It is known (see, e.g., [28, Corollary 1.3]) that for any prime p we have

Bp−1 − 1 ≡ Sp−1 (mod p). (6)

Summarizing the reformulations of Kurepa’s hypothesis given in Remark 1.3 and by (1), and in in view of
the congruences (4) and (6), we immediately get the following result.
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Proposition 2.1. The following statements are equivalent:

(i) Kurepa’s hypothesis holds;

(ii) Bp−1 . 1(mod p) for each odd prime p;

(iii) Sp−1 . 0(mod p) for each odd prime p;

(iv) Kp . 0(mod p) for each prime p ≥ 7.

The idea of the proof of Kurepa’s hypothesis given by D. Barsky and B. Benzaghou in 2004 [1, Théorème
3, p. 13] (for a related discussion see [29, Section 4]) is to consider what is known as the Artin-Schreier
extension Fp[θ] of the field Fp = {0, 1, . . . , p − 1} of p elements, where θ is a root (in the algebraic closure of
Fp) of the polynomial xp

− x − 1. This is a cyclic Galois extension of degree p over Fp. Note that the other
roots of xp

−x−1 are θ+ i for i = 1, 2, . . . , p−1. The reason this field extension comes up naturally as follows.
The generating series F(x) of the Bell numbers can be evaluated modulo p; this means one computes a
“simpler” series Fp(x) such that F(x) − Fp(x) has all coefficients multiples of p, where

F(x) =

∞∑
n=0

Bnxn =

∞∑
n=0

xn

(1 − x)(1 − 2x) · · · (1 − nx)

is the generating function for Bn’s. Since Kurepa’s hypothesis is about the Bell numbers Bp−1 considered
modulo p, it makes sense to consider Fp(x) rather than F(x). By using this idea, D. Barsky and B. Benzaghou
[1, Théorème 3, p. 13] proved that Bp−1 . 1(mod p) for any prime p. However, as noticed above, this proof
contains some irreparable calculation errors [2].

Definition 2.2. Let p be a prime, and let A = (ai j)
1≤ j≤n
1≤i≤m and B = (bi j)

1≤ j≤n
1≤i≤m be the m× n matrices whose all entries ai j

and bi j (i = 1, . . . ,m; j = 1, . . . ,n) are integers. As usually, we say that the matrices A and B are equal in the field Fp
if ai j ≡ bi j(mod p) for all i = 1, . . . ,m; j = 1, . . . ,n, and in this case we write A =p B.

Accordingly to Proposition 2.1, an odd prime p is said to be a counterexample to Kurepa’s hypothesis if
and only if Sp−1 ≡ 0(mod p) (or equivalently, Bp−1 ≡ 1(mod p)). Motivated by the congruence involving the
Bell numbers and the derangement numbers established in 2011 by Z.-W. Sun and D. Zagier [28, Theorem
1.1] (the congruence (14) of Lemma 3.1 in the next section), here we prove the following result.

Theorem 2.3. An odd prime p is a counterexample to Kurepa’s hypothesis if and only if in the field Fp there holds

1 (p − 1)p−2 (p − 1)p−3 . . . (p − 1)
1 (p − 2)p−2 (p − 2)p−3 . . . (p − 2)
...

...
...

...
...

1 2p−2 2p−3 . . . 2
1 1 1 . . . 1




B0
B1
B2
...

Bp−2


=p


S0
−S1
S2
...

−Sp−2


, (7)

or equivalently, 
1 1 . . . 1 1

(p − 1) (p − 2) . . . 2 1
(p − 1)2 (p − 2)2 . . . 22 1

...
...

...
. . .

...
(p − 1)p−2 (p − 2)p−2 . . . 2p−2 1




−S0
S1
−S2
...

Sp−2


=p


B0
B1
B2
...

Bp−2


. (8)

As an immediate consequence of Theorem 2.3, we obtain the following “matrix” reformulation of Kurepa’s
hypothesis.
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Theorem 2.4. The following statements are equivalent:

(i) Kurepa’s hypothesis holds;

(ii) for each odd prime p there holds

1 (p − 1)p−2 (p − 1)p−3 . . . (p − 1)
1 (p − 2)p−2 (p − 2)p−3 . . . (p − 2)
...

...
...

...
...

1 2p−2 2p−3 . . . 2
1 1 1 . . . 1




B0
B1
B2
...

Bp−2


,p


S0
−S1
S2
...

−Sp−2


;

(iii) for each odd prime p there holds
1 1 . . . 1 1

(p − 1) (p − 2) . . . 2 1
(p − 1)2 (p − 2)2 . . . 22 1

...
...

...
. . .

...
(p − 1)p−2 (p − 2)p−2 . . . 2p−2 1




−S0
S1
−S2
...

Sp−2


,p


B0
B1
B2
...

Bp−2


.

Theorems 2.3 and 2.4 and the fact that the square (p − 1) × (p − 1) matrices on the left hand side of the
equalities (7) and (8) are the Vandermonde-like matrices justify the following definition.

Definition 2.5. Let p be any odd prime. Then the matrices Vp and Cp defined as

Vp =



1 (p − 1)p−2 (p − 1)p−3 . . . (p − 1)
1 (p − 2)p−2 (p − 2)p−3 . . . (p − 2)
...

...
...

...
...

1 2p−2 2p−3 . . . 2
1 1 1 . . . 1


and

Cp =


1 1 . . . 1 1

(p − 1) (p − 2) . . . 2 1
(p − 1)2 (p − 2)2 . . . 22 1

...
...

...
. . .

...
(p − 1)p−2 (p − 2)p−2 . . . 2p−2 1


are called the Kurepa-Vandermonde matrices. Furthermore, the values of their determinants det(Vp) and det(Cp) in
the field Fp, i.e., det(Vp)(mod p) and det(Cp)(mod p), are called the Kurepa-Vandermonde determinants.

Recall that the class number of an algebraic number field is by definition the order of the ideal class group of
its ring of integers. We also prove the following result concerning the values of the Kurepa-Vandermonde
determinants det(Vp) and det(Cp).

Theorem 2.6. Let p be any odd prime. Then the Kurepa-Vandermonde matrices Vp and Cp satisfy the following
inverse relation in the field Fp:

Vp · Cp =p
−Ip−1, (9)

where Ip−1 is the identity matrix of order p − 1. In other words, Cp =p
−(Vp)−1 in the field Fp.

Furthermore,

det(Vp) = (−1)(p−3)(p−2)/2 det(Cp) = −

p−2∏
i=1

(i!), (10)
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det(Vp) ≡ (−1)(p−3)(p−2)/2 det(Cp) ≡ (−1)(p2
−1)/8

(
p − 1

2

)
! (mod p) (11)

and
(det(Vp))2

≡ (det(Cp))2
≡ (−1)(p+1)/2 (mod p). (12)

In particular, if p ≡ 3(mod 4), then

det(Vp) ≡ (−1)(p−3)(p−2)/2 det(Cp) ≡ (−1)(p2
−1)/8+(h(−p)+1)/2 (mod p), (13)

where h(−p) is the class number of the imaginary quadratic field Q(
√
−p).

3. Proof of Theorems 2.3 and 2.6

Proof of Theorem 2.3 is based on the following result involving the Bell numbers Bn and the derangement
numbers Sn established in 2011 by Z.-W. Sun and D. Zagier [28].

Lemma 3.1. ([28, Theorem 1.1]). Let m be a positive integer and let p be a prime not dividing m. Then

p−1∑
k=1

Bk

(−m)k
≡ (−1)m−1Sm−1 (mod p). (14)

The following result is also known.

Lemma 3.2. (see, e.g., [28, Corollary 1.3]). If p is a prime then

Bp−1 − 1 ≡ Sp−1 (mod p). (15)

Proof. [Proof of Theorem 2.3] First observe that by Fermat little theorem,

p−1∑
k=1

(p − i)p−k(p − j)k−1
≡

p−1∑
k=1

(
p − j
p − i

)k−1

(mod p)

≡


p − 1 (mod p) if i = j;( p− j

p−i

)p−1
−1

p− j
p−i −1

(mod p) if 1 ≤ i , j ≤ p − 1

≡

{
−1 (mod p) if i = j;
0 (mod p) if 1 ≤ i , j ≤ p − 1.

The above congruence shows that for the square (p − 1) × (p − 1) matrices Vp =
(
(p − i)p− j

)1≤ j≤p−1

1≤i≤p−1
and Cp =(

(p − j)i−1
)1≤ j≤p−1

1≤i≤p−1
from the left hand sides of the equalities (7) and (8), respectively, we have Vp · Cp =p

−Ip−1

in the field Fp, where Ip−1 is the identity matrix of order p − 1. This shows that Cp =p
−V−1

p in the field Fp,
and therefore, the equalities (7) and (8) are equivalent.

Now suppose that an odd prime p is a counterexample to Kurepa’s hypothesis. As the equalities (7) and
(8) are equivalent, it suffices to prove the equality (7). The equivalence (i)⇔ (ii) of Proposition 2.1 yields

Bp−1 ≡ 1 (mod p). (16)

Using the congruence (14) of Lemma 3.1 and applying Fermat little theorem, we find that for each m =
1, 2, . . . , p − 1,

p−2∑
k=0

Bk

(−m)k
≡ (−1)m−1Sm−1 + B0 −

Bp−1

(−m)p−1 (mod p)

≡ (−1)m−1Sm−1 + B0 − Bp−1 (mod p). (17)
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Since by Fermat little theorem, 1/(−m)k
≡ 1/(p −m)k

≡ (p −m)p−1−k(mod p) for all pairs (m, k) with 1 ≤ m ≤
p − 1 and 0 ≤ k ≤ p − 2, then substituting B0 = 1 the congruence (17) becomes

p−2∑
k=0

(p −m)p−1−kBk ≡ (−1)m−1Sm−1 + 1 − Bp−1 (mod p), m = 1, 2, . . . , p − 1. (18)

Substituting the congruence (16) into (18) gives

p−2∑
k=0

(p −m)p−1−kBk ≡ (−1)m−1Sm−1 (mod p), for each m = 1, 2, . . . , p − 1. (19)

Finally, observe that the set of p − 1 congruences given by (19) is equivalent with the matrix equality (7) in
the field Fp.

Conversely, suppose that the matrix equality (7) in the field Fp is satisfied for some odd prime p. Then
the first element of the matrix product on the left hand side of the equality (7) is equal to

p−2∑
k=0

(p − 1)p−1−kBk,

whence by (7) we have
p−1∑
k=1

(p − 1)p−1−kBk−1 ≡ S0 = 1 (mod p). (20)

Furthermore, the congruence (18) for m = 1 yields

p−2∑
k=0

(p − 1)p−1−kBk ≡ S0 + 1 − Bp−1 = 2 − Bp−1 (mod p). (21)

Now comparing the congruences (20) and (21) gives

Bp−1 ≡ 1 (mod p). (22)

In view of the equivalence (i) ⇔ (ii) of Proposition 2.1, the congruence (22) shows that a prime p is a
counterexample to Kurepa’s hypothesis. This completes the proof of Theorem 2.3.

Proof. [Proof of Theorem 2.6] The equality (9) is proved at the beginning of the proof of Theorem 2.3.
Notice that the (p − 1) × (p − 1) Kurepa-Vandermonde matrix Vp on the left hand side of (7) is a

Vandermonde-type matrix. Namely, interchanging the jth column and the (p + 1 − j)th column of Vp for
each j = 2, 3, . . . , (p − 1)/2 (the first column of Vp remains fixed), the matrix Vp becomes the Vandermonde

matrix V′p =
(
(p − i) j

)0≤ j≤p−2

1≤i≤p−1
. Hence,

det(Vp) = (−1)(p−3)/2 det(V′p) = (−1)(p−3)/2
∏

1≤i< j≤p−1

((p − j) − (p − i))

= (−1)(p−3)/2
∏

1≤i< j≤p−1

(i − j) = (−1)(p−3)/2(−1)(
p−1

2 )
∏

1≤i< j≤p−1

( j − i) (23)

= (−1)(p2
−1)/2−p

p−2∏
i=1

p−1∏
j=i+1

( j − i) = −

p−2∏
i=1

(p − 1 − i)! = −

p−2∏
i=1

i!

= −

(
p − 1

2

)
!

(p−3)/2∏
j=1

( j!(p − j − 1)!).
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Notice that the matrix Cp can be obtained from the transposition VT
p of the matrix Vp after (p− 3) + (p− 2) +

· · · + 1 = (p − 3)(p − 2)/2 suitable interchanges of its rows. This together with the equality (23) (in the third
row) implies that

det(Vp) = (−1)(p−3)(p−2)/2 det(Cp) = −

p−2∏
i=1

(i!),

which is in fact, the equality (10).
In view of (10), clearly it suffices to prove only the congruences (11)–(13) concerning the determinant

det(Vp).
Notice that using Wilson theorem, for each j = 1, 2, . . . , (p − 3)/2 we find that

j!(p − j − 1)! ≡ ((−1) j(p − 1)(p − 2) · · · (p − j))(p − j − 1)! (mod p)
= (p − 1)!(−1) j

≡ (−1) j+1 (mod p). (24)

Substituting (24) in (23), we obtain

det(Vp) ≡

(
p − 1

2

)
!(−1)1+

∑(p−3)/2
j=1 ( j+1) (mod p)

= (−1)(p2
−1)/8

(
p − 1

2

)
! (mod p), (25)

which implies the congruence (11).
If p is a prime such that p ≡ 3(mod 4), then by a congruence of Mordell [20], we have(

p − 1
2

)
! ≡ (−1)(h(−p)+1)/2 (mod p), (26)

where h(−p) is the class number of the imaginary quadratic field Q(
√
−p). Substituting (26) into (25) gives

the congruence (13).
Since (

p − 1
2

)
! =

p−1∏
i=(p+1)/2

(p − i) ≡ (−1)(p−1)/2
p−1∏

i=(p+1)/2

i (mod p),

we have((
p − 1

2

)
!
)2

=

(
p − 1

2

)
! ·

(
p − 1

2

)
!

≡ (−1)(p−1)/2(p − 1)! ≡ (−1)(p+1)/2 (mod p). (27)

The congruences (25) and (27) immediately yield

(det(Vp))2
≡

((
p − 1

2

)
!
)2

≡ (−1)(p+1)/2 (mod p).

This proves (12), and the proof is completed.
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