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Improvement of Griiss and Ostrowski Type Inequalities
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Abstract. Several inequalities of Ostrowski-Griiss-type available in the literature are generalized
considering the weighted case of them. The inequality of Griiss type proved by P. Cerone and S.S. Dragomir
[3] is extended for the weighted case.

1. Introduction

In 1935 Griiss [8] proved a integral inequality that establishes a connection between the integral of the
product of two functions and the product of the integrals. In 1938, Ostrowski [13] established an interesting
integral inequality which gives an upper bound for the approximation of the integral average by the value
of mapping in a certain point of the interval. In 1997, Dragomir and Wang [6] combined the Ostrowski
inequality with Griiss inequality and obtained a new result for bounded differentiable mappings which is
well known in the literature as Ostrowski-Griiss inequality. In 2000, B. Gavrea and I.Gavrea [7] obtained
some generalizations of these inequalities using the least concave majorant of the modulus of continuity
and the second order modulus of smoothness. During the last few years, many researchers focused their
attention on the study and generalizations of these inequalities ([3], [4], [9], [10], [11], [14], [15]). In this
paper we generalize these type of inequalities considering the weighted case of them and we improve some
Ostrowski-Griiss type inequalities available in the literature.

The functional given by

1 (" I AP U
10,0 = 5= [ s = [ fom- 5= [ g0, m

where f, g : [a,b] — R are integrable functions, is well known in the literature as the Chebyshev functional
(see [2]). In 1935, G. Griiss [8] obtained the following result.

Theorem 1.1. Let f and g be two functions defined and integrable on [a,b]. If m < f(x) < M and p < g(x) < P for
all x € [a,b], then we have

7, 9)] < ;1= m)® - p). @

The constant 1/4 is the best possible.
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Another celebrated classical inequality was proved by A. Ostrowski [13] in 1938, which we cite below in

the form given by G.A. Anastassiou in 1995 (see [1]).

Theorem 1.2. Let f bein C'[a, b], x € [a,b]. Then

(x —a)?>+ (b —-x)?
2(b—a)

I1flleo- ©)

b
00 -5 [ s <

t—a, tela,x]
t=b, te(x,b]
obtaining a new result for bounded differentiable mappings, as shown in the relation (6), which is known
as the Ostrowski-Griiss-type inequality. This inequality has been improved by M. Mati¢ et al. ([12]), and
we recall their result in (5). Animprovement of this result is given by X.L. Cheng in [5], as shown in relation
(4). He also proved that the constant 1/8 is sharp.

In1997,S.S. Dragomir and S. Wang [6] applied Theorem 1.1 to the mappings f’(t) and p(x, t) = {

Theorem 1.3. Let f : [a,b] — R be a differentiable mapping. If y < f'(x) < I, x € [a,b] for some constants
v, I € R, then

| < 6-ar-y @
1
— (h- -
< 4\/5( a) T =7y) (5)
< Z0-aC-y), ®)
. 1 [ f(b) - f(a) a+b
where L(f)(x) := f(x) - b2 L fHdt — - (x - )

In [17], N. Ujevi¢ proved the following result, involving the second derivative of the mapping f.

Theorem 1.4. (see Theorem 4 in [17]) Let f : I — R, where I C R an interval, be a twice continuously differentiable
mapping in the interior Int(I) of [ with f"" € Ly(a, b), and let a, b € Int(I), a < b. Then we have, for all x € [a, D],
( 61)3 /2

\/_

In this paper we will consider the weighted variant of the functional .£ and some new inequalities which
involve second derivative of mapping are proved. The weight function is assumed to be non-negative and
integrable over its entire domain. In order to formulate the main results we will define the following:

|L(HE)| < ——=IIf"Il2. )

b p
Definition 1.5. Let w : (a,b) — (0,00) be integrable, i.e., fw(t)dt < oo, then m(a,p) = fw(t)dt,

f B

M(a,B) = f tw(t)dt and My(a, ) = f tw(t)dt are the first moments, for [a,B] C [a,b]. Define the mean
: ) M(a, p)

m(a,B)’

The weighted variant of the functional L can be written in the following way

b
[ sowwar- D o).

The structure of this paper is as follows: in Section 2 we give new bounds for the functional £, and
improve some inequalities available in literature. In Section 3 involving the least concave majorant of the
modulus of continuity we provide new estimations of the functional £,. Finally, in Section 4 we extend for
the weighted case a Griiss-type inequality proved by P. Cerone and S.S. Dragomir [3].

of the interval [, B] with respect to the weight function w as o(a, B) :=

Lo(f)() := f(x) -



A.M. Acu / Filomat 29:9 (2015), 2027-2035 2029
2. Ostrowski-Griiss-Type Inequalities

The aim of this section is to give new inequalities for the functional £, involving the second derivative

of mapping.
Denote
1 ! t—a
(u - tHwu)du — —— (x —o(a, b)), t € [a,x),
K, f):=] M@t f b-a (8)

m(a b) f (u — yw(u)du — % (x—o0o(a,Db)), te][xDb]

Theorem 2.1. Let f : [a,b] — R be twice differentiable on the interval (a, b), with the second derivative bounded on

(ab), ie.,||f"lleo := sup |f”(t)| < oo. Then, for all x € [a, b], we get
te(a,b)

b
L] < utaia DI, where s, byi= [ 1K i ©)
b
Proof. Integrating by parts, we have f K(x, t)f"(t)dt = —Li(f)(x). Therefore, we get

b
| Lo ()] = <Ml - f 1K (x, Oldt = [If"lloo - u(x; a,b).

b
f K(x, £ (H)dt

O

Theorem 2.2. Let f : [a,b] — R be twice differentiable on the interval (a,b), with f” € Lpla,b]. Then, for all
x € [a, b], we have

b 1/2
| Lo (X)) < plx;a, DIIf|l2, where p(x;a,b) = [f (K(x, 1)) dt] : (10)

Proof. If we consider the function K(x,t) defined in (8), it follows

b 1/2
LoD = f K, O ()t

b
<IIf”Il2 [f (K(x, 1) dt] = u@;a, D)lfllz. O
Theorem 2.3. Let f : [a,b] — R be twice differentiable on the interval (a,b), with f”” € Lila,b]. Then, for all
x € [a, b], we have

| Luo(| < v(x;a,b) - NI f”Ilh, where v(x;a,b) := sup |K(x, )] . (11)
telab]

Proof. If we consider the function K(x, t) defined by (8), it follows

|L:[f1l = <f”lh - sup [K(x, )] = v(x;a,b) - 1| f7]h.

tela,b]

f K(x, £) f (D)t

O

Remark 2.4. Fora =0, b =1 and w(x) = 1 the inequalities (9)-(11) and (7) become

L < G- N leo < 12|If"||oo, where (12)
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1 3 2
D [—16x +18x% — 6x + 1], x€1[0,1/2]

Ci(x) = 1
3 [16x3 —30%2 + 18x — 3], xe(1/2,1],
LX) < Co(x) - NIf” M2 < gllf”llz ~ 0.0913||f"'|l2, where (13)
\/ x X 1
CO=ENTT I T TR
IL(F)@)] < Cax) - IIf7 [l < 16||f"||1 where (14)
1( 1y 2-V2 2+ V2
Cao) = 2x_2)’ |71 T4
o La-x xe[ou\z_ﬁ“‘/E
2 ’ 4 1 1 |
Lﬂﬁ@ﬂs2j2§Vth00%%VWh (15)

In this particular case, our estimates (13) is better than N. Ujevié’s result (15).

3. Ostrowski-Griiss-Type Inequalities in Terms of the Least Concave Majorant
In order to formulate the next result we need the following

Definition 3.1. Let f € Cla, b]. If, for t € [0, o0), the quantity w(f;t) = sup {|f(x) -
modulus of continuity, its least concave majorant is given by

a(f;t) = sup{(t — 0a(f; y;tiy - Ha(f;x)

< t} is the usual

;0<x<t<y<b-a, xiy}

Let I = [a,b] be a compact interval of the real axis and f € C(I). In [16], the following result for the least
concave majorant is proved:

l

):%a)(f,-t), £>0.

K(3 fclnclobl)= inf (If o+

eCl(l)

Before we proceed to the result of this section we recall the following lemma established by J. Roumeliotis
in [15].

Lemma 3.2. [15] There exists t* € [a, b] uniquely satisfying

m(a b) - o0, b)) = { m(t,b), a < x < o(a,b), (16)

m(a,t*), o(a,b) < x < b.

Denote

f w(u)du — 1 5=, (x—ol@b),telax),
P(x, t) = m( m(a, b) 1
—m(a, D) jb‘ w(u)du — =g (x —o(a,b)),t €[x,D].
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b
Lemma 3.3. Ifii(x;a,b) :=f |P(x, )| dt, then

ii(x;a,b) = x)w(t)dt, for all x € [a,b] and t* as defined in Lemma 3.2. 17)

Proof. If a < x < o(a,b), then P(x,t) 2 0, for t € [a,x] U [+, b] and P(x,t) <0, for t € [x, +'].
Also, if 0(a,b) < x < bwe have P(x,t) <0, fort € [a,t*] U [x,b] and P(x,t) > 0, for t € [t*, x].
From proof of Theorem 3 ([15]) it follows

X b + t*
i(x;a,b) = f P(x, Hdt + f P(x, Hdt — f P(x, t)dt = 2 f (t — x)w(t)dt, for all x € [a, o(a, b)].
a t* X m(a, b) X

In a similar way the identity (17) can be proved for x € (0(a,b),b]. O

Lemma 3.4. There exists t* € [a, b] uniquely satisfying

» .
o L (u — t)w(u)du = tb —_ab (x—o(a,b)), fora <x<o(a,b),and (18)

m(a D) f (u =t wu)du = t” (x a(a,b)), foro(a,b) <x <b. (19)

, 1 b t—
Proof. Let us consider a4 < x < o(a,b) and f(f) = ma.b) f (u — Hw(u)du — e
We have

z (x—o0(a,Db), t € [x,Db].

1
't = _m(u D) f w(u)du — (x o(a,b)).
Since f'(t) < 0ont € [x,t*] and f'(t) > O on t € [t*, D], where t* is defined in Lemma 3.2, then to show that

t* € [x, t*] exists such the identity (18) holds it will suffice to establish that f(x) > 0.
We have

f) =

(x o(a, b)) >

— x)w(u)du —

m( 5 f ~ xX)w(u)du - ;;:;t (x - o(a, b))
= (o(a,b) —x) — m (x —o(a, b)) = (o(a,b) - x) m > 0.

Similarly, we can show (19) to be true for o(a,b) < x <b. O

b
Lemma 3.5. Ifu(x;a,b) := f |K(x, t)|dt, then for all x € [a, b] and t™ as defined in Lemma 3.4, it follows
a

u(x;a,b) = %(‘;b) {t**z —(b-a)x - « er bz} — xo(a, b) + %2 (20)
- (1 " {Mz(t b) - —Mz(a b) — £ 2m(t", b)} fora<x<o(ab)
and
u(x;a,b) = x%iw{ P2 (b—ayx + az;bz}—xa(a,b)+x; 1)

m(l D) {Mz(ll ) — —Mz(a b) - t**zm(a t )} for o(a,b) < x < b.
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Proof. If a < x < o(a, b), then
K(x,t) >0, fort € [a,x] U (x,t™] and K(x,t) <0, for t € (+*, D]. (22)
Also, if o(a, b) < x < b we have
K(x,t) >0, for t € [t",x] U (x,b] and K(x, t) <0, for t € [a, ™). (23)
From (22), (23) and Lemma 3.4 the relations (20) and (21) are proved. [

Theorem 3.6. If f € C'[a, b], then

i(x;a,b) (. 2u(x;a,b)
Luo(H@I < =50 (f e ) 4)
where ii and u are defined in Lemma 3.3 and Lemma 3.5.
b
Proof. Let A : Cla, b] — R be defined by A(f)(x) = f P(x, t) f(t)dt. We have
AN < Ifll - #(x; a, b). (25)

b
Let g € C![a,b] and K(x, t) be the mapping defined by (8). We obtain f K(x, t)g' (t)dt = —A(g)(x), namely
a

b
A@))] = <1171l - f K, Ot = (19l - 1u(x; 0, ). (26)

b
f K(x, t)g' (t)dt

From relations (25) and (26), we have
A )] IA(f = g + )@ < A(f = D@ +A@ ] < 1If = glleo - (x50, b) + 1 lloo - 1u(x; 2, b)

o . u(x;a,b),
(i, b)gegll[ﬁ,bl{”f Il + ii(x; a, b)”g Hm}

IA

Therefore,

IA(f)(0)] < (27)

i(x;a,b) [, 2u(x;a,b)
2 v f ii(x;a,b) |

If we write (27) for the function f’, we obtain inequality (24). O
Theorem 3.7. If f € Cla, b], then for all x € [a, b], we have

u(x;a,b)

|L(f)(x)| < 4K( 1 ; f;Cla, b], C*a, b]), where (28)
K(t; f;Cla, b, C*[a, b]) = én[f b]{llf = glleo + tlg” lo} and u is defined in Lemma 3.5.
g€C2[a,

Proof. Forany f € Cla, b], | Lu(f)(x)| < 4|fllc- For g € C?[a, b], from Theorem 2.1 we get|Ly,(g)(x)| < u(x;a, b)l|g” ||co-
So, for f € C[a, b] fixed and g € C?[a, b] arbitrary, we have

LA < 1Lalf = D1+ L@@ < 4F = gl + (550, D)llg oo = 4 {nf ~ gl + ”‘"”T”’b)ng"nm} .

Passing to the infimum over g € C?[4, ] gives relation (28). [
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4. The Weighted Griiss Type Inequalities

In [3], P. Cerone and S.S. Dragomir proved the following inequality for functional T(f, g).

Theorem 4.1. ([3])Assume that f : [a,b] — R is a measurable function on [a,b] and such that
b

f=f- ﬁf f(t)dt, ef € Lyla,b], where e(t) = t, t € [a,b]. If g : [a,b] — R is absolutely continuous

and g’ € Ly[a, b], then we have the inequality

2.1/2
I L R )
IT(f, 9 < = allg Il - fab o <7 a||g I - lle filo-

In this section we will prove a Griiss type inequality for the weighted case. Let w : [2,b] — [0, o0) a weight
function and we will consider that w is a bounded function, namely exists K € R such that w(x) < K for all
x € [a,b].

Denote

Tu(f,9) = ! fge@ds [ feweds [} g@yeds
fu ’ w(x)dx ( fab o) dx)2

the Cebygev functional for the weighted case.

7

b
Consider in Hilbert space L,y[a,b] the inner product (f,g), = f fx)g(x)w(x)dx with the norm
b
1l = ( | f(x)zw(x)dx)

b
Lemma 4.2. Assume that function f : [a,b] — IR is Lebesque integrable and f f@wx)dx = 0.

1/2

Define F(x) = f fOw(t)dt, e(x) = x, x € [a, b] and assume that F, f,ef € Ly ,[a, b]. Then we have

AR, - el = (. feda)
IAIE.,

IIFI,, < 4K < 4K2||fell3 - (29)

Proof. We have

b b b
f F(x)*w(x)dx < Kf F(x)*dx = Kf F(x)*(x — A)'dx

a a a

2
IFIZ,,

. b b
K- F(x)*(x - /\)Ll -K- f 2F(x) f (x)w(x)(x — A)dx = 2K - f (A = 0)F(x) f(x)w(x)dx

b
. ( f F (x)zw(x)dx)
1/2

b
||F||2,wS2K( [ <A—x>2f<x>2w<x>dx) ,

1/2 1/2 1/2

IA

b b
2K ( f (A —x)°f (x)ZW(X)dx) = 2K |IFll2.0 - ( f (A = 2)° f(x)*w(x)dx

From the above relation we have

namely

b
IIFI3,, < 4K? f (A = x)* f(x)*w(x)dx.
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Denote
b
o) = [ = 0o = R = 2005, e+ Il
AR, - IfelE., — (<F, febo)?

Since inf g(A) = , we obtain the relation (29).
i IfIE,
Corollary 4.3. Assume that f satisfies the assumption in Lemma 4.2 and 0 < a < b. Then we have the inequality
2(0-a? (fref) o (b ” ofI2
@ e, 2

Proof. We use the following integral version of Cassels’ inequality

IFIR, < K

[ poierde [ pono?de -+ mp

(fﬂbp(t)l(t)h(t)dt)z 4mM

. h(t)
provided 0 < m < 0

Applying (30) for p(t) = f(t)?w(t), I[(t) = 1, h(t) = t, t € [a,b] we get

(30)

<M< oaettelablandp > 0ae.ton[a,b].

15, - Nl fell3, _(b+ay
(f few)* — 4ab ’

namely

A5 - 1 fel, - WJM)_4M(Ufm

Using relation (29) we have

) ({f, f€>w)
ab - Ifli3,,

b -
IFIE,, < 2 L

. 1 b
Theorem 4.4. Assumethat f : [a,b] — Risameasurable function on [a, bland such that f := f—— f fHw(t)dt,
w(t)dt Ya
ef € Lyyla,bl. If g : [a,b] — R is absolutely continuous and g’ € Ly ,[a, b], then we have the inequality

2K ‘ [”f”%,w Nlef13 ., = <f ef>zzu]1/2 | x

ITw(f, 9)l < 19112, - = < 19’ 12,00 - llefll2,- (31)
= o " I Faa” ™ P
Proof. Denote .
E(x) = f f(Hw(t)dt, x € [a,b]
We have b
b

—— [ P - Fl)g()| - _ffawmmx

[ w(t)dt Ja [ w(tdt [ w(t)t
But

_ b 1 b b 1 b b
b)= - d dt= dt— ——— dt - du=0.
F(b) f (f(t) [ i f fw(u) qu(t)t f f(Oyw(t)dt [ otyin f w(t)dt f F)w(u)du=0



A.M. Acu / Filomat 29:9 (2015), 2027-2035 2035

Therefore
1 b 1 b 1 b
_ F(x)g' (x)dx = ———— (x) - — Bw(t)dt [w(x)g(x)dx
A ! w(t)dtfa 7 I ! w(t)dtfa / A ’ w(t)dtfa / g
1 b 1 b b
= ()g(x)w(x)dx — —— (Hw(t)dt - (w(x)dx| = =Tu(f, 9)-
[} wieydt f 17 [ w(t)dtfa d f I i
From the above relation we can write
T, 9 € ——— Wl 19"l

|, w(t)dt

From Lemma 4.2 we obtain the inequality (31).

Remark 4.5. For w(x) = 1 we have the results obtained by Cerone and Dragomir in [3].
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