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ABSTRACT. In this paper il is described a programming package vmplementing
the tnterpreter of programming language for manipulation of mathematical specira,
representing an extension of DISP. For this purpose several new data {ypes and new
kind of functions (called speciral data lypes and spectral functions) are defined and
implemented.

1. Introduction

The theory of mathematical spectra was founded by M. Petrovié [9].
IX. Orlov discovered the practical applications of it [1], [2].

DEFINITION 1.1. The mathematical spectrum of a sequence of integers ay, . ..,
y, .. the spectrum of the polynomial P{z) = agz" + a1~ ' 4+ ...+ a, is the
ordered pair (5, h), where S = P(10") is the spectral value, and A is the spectral
thythm determined by the condition 10" > 2 + max {|a;|}.

DeriNiTIoN 1.2, The mathematical spectrum of a sequence of fixed-point
numbers aq, . .. , ¢, is the ordered triad (S, h, k), where k is the maximal number of
decimal digits and (S, k) is the spectrum of sequence of integers by, ... , b, obtained
from the equalities b; = 10* ¥ a;,i=0,...,n.

B. Mihajlovié¢ was implemented the multiplication of two mathematical spectra
using programs in FORTRAN IV ([4] [5]).

J. Madi¢ was introduced the division of two mathematical spectra and devel-
oped the first programming package for the experimental work with mathematical
spectra ([3] [7]). This programming package implements programming language
representing an extension of ADVANCED FORTRAN.

2. The interpreter of the programming language

The interpreter is an infinite loop in TURBO C. Tt performs the following
actions on every pass:

- reads a complete expression,;

- translates the entered expression in an internal form;

- computes the value of the internal form in the internal form;

- translates the internal form to the external form, if the value was successlully
computed.
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2.1. Data types The programming language contains two main data types.
] g 5 suag
Lisp data lypes:
lists, symbols, strings, integers, fixed-polnt numbers, ralional numbers, file-pointers
B o =] H 5 3
NIL, ‘T, LISP-functions.
Spectral dala types :
vectors, spectral constants, spectral functions, spectral expressions.

2.2. Spectral constants A spectral constant represents the notation of the
spectrum with uniform rhythm. This notation begins and ends with symbol ’$’.
The sign of the spectrum follows first symbol ’$’, and could be omitted. Strips are
separated using character ’|’.

ExamMmprLE 1. Here are several spectral constants:

a)  $23]78|59% b) §—179|054|391]5028 ¢) § — 174.23]505.63|00.95%.

2.3. The internal form of a spectrum The internal form of a spectrum is
a structure with two elements.

One of them is defined as single-dimension array of integers containing lollow-
ing data stream: spectral sections number, spectral rhythin, sign of the spectrum,
number of decimal digits (zero if the spectrum represents a sequence of integers),
and the other 1s defined as a single-dimension array which elements are equal to
digits of the representing spectruim.

2.4. The internal form of a spectral constant A spectral constant is
represented as the element of the union representing the internal form of all data
types. This element 1s the internal form of the corresponding spectrum. We use
pointers to access the elements of this structure,

2.5. Vectors A vector is a sequence of numbers between square brackets. The
internal form of the vector [ay, ... a,] is the binary tree representing list (ay .. .a,),
except the element of the union indicating data type.

2.6. Transformation of the internal form of a vector to the internal
form of the corresponding spectrum

ALGoRrITHM L.
Input parameter is the pointer to the tree representing a vector.
STEP 1. Using cars of the tree we ohtain elements of the vector.
STEP 2. Return the internal form of the spectrum corresponding Lo the given
numbers.
2.7. Transformation of the internal form of a spectral constant to
the internal form of corresponding vector
ALGoriTHM 2. Pointer to the internal form of a spectral constant of n strips
is given.
STEP 1 Define a tree with initial value cons(NIL, NIL).
*STEP 2. The body of the for-loop performs steps A and B, repeating n times.
Step A. Compute the effective value of the current strip.

Step B. Transform given inleger to the internal form and replace cdr of the
tree.
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STEP 3. Return pointer to the given tree.

2.8. Spectral functions The interpreter evaluates all arguments of the spec-
tral functions. Arguments of these functions could be spectral expressions or LISP
expressions whose values are numbers, vectors or spectral constants.

We can note several different functions types.

A. Functions for the implementation of spectral operations:
spectral addition  $+ ; |
spectral multiplication  §* ; |
spectral subtraction  $- ; i
right lengthening  S$rlen ; !
left lengthening  $llen ; !
left condensation  $leon ;

Conversion of a spectrum into a vector  $eval |
Effective value of a strip ~ $efval ;
[nverse spectrum  $sinver ; |

B. Forming new spectra: 1
Spectral generation  Sgensp ;

Generation of the spectrum whose strips are | %1

Ceneration of the spectrum whose strips arte 0 $0 ;
C. Spectral relation functions:

Equality of two spectra  $= ;

Tdentity of two spectra  Fident ;

Clomparing of absolute values of two spectra § >, § < .

2.9. Spectral expressions Spectral expressions could be separated into three
groups:

2. Spectral expressions whose values are vectors;
3. Spectral relation expressions.

The fivst group contains following expressions: spectral constants, symbols bo-
unded with spectra, calls of the spectral functions $+, §—, §+, Srien,
$llen , $gensp, $1, $0.

The second group contains: vectors, numbers as single-element vectors, symbols
bounded with vectors, calls of the spectral functions $+4, $—, $*, $eval , $efval.

Elements of the third group evaluate to the LISP constants NIL (as false) or
T (as true). This group of spectral expressions contains: NIL, T, any expression
whose value is T or NIL, calls of the spectral functions $ =, § >, § <, $ident. |

A call of spectral function is the list whose head is the name of the called ‘
function and the tail is the argument list, ‘

\
|
1. Spectral expressions whose values are spectra;
|
|
|
|
\

2.10. Functions $+4, $- and §$*

DescripTiON. (34 zy) (53— =2y ($* 2 y). |
Both arguments are spectral expressions. :\

IMPLEMENTATION. The corresponding C function detects the following cases: !
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A. Both arguments are pointers to the internal forms of spectral constants. The
result is the internal form of the spectral constant equal to the sum, difference or
product of input spectra.
B. Both arguments are pointers to the internal form of vectors. The result is pointer
to the internal form of vector obtained in this way:
STEP 1. Convert input parameters into the internal form of the corresponding
spectra using Algorithm 1.
STEP 2. Compute the resulting spectra applying corresponding arithnietic opera-
tion.
STEP 3. Return the internal form of the vector obtained according to Algorithm
2
(. Pointer to the internal form of a number n replace by the pointer to the internal
form of the vector [n].
D. If exactly one argument is pointer to the spectral constant, transform the other
argument into the internal form of the spectral constant by applying Algorithm 1.
Then the case A is applied.

ExXAMPLE 2.
> ($4  $25|78|14F § — 170|543%)
@F + 025|807|471%
> ($+  (setq o $—44|09|57|118) (setqg & [I —2 34455 G28]))
@[—43 — 12 34498 917]
>(F4+ §-—12.23]11.208 §—19.2365.11F)
@F — 07.00[53.915
> (§# [46 — 5448][2621 — 23])
@[1196 — 438 — 944 2250 — 1104]

2.11. Function $eval

DEscriPTION.  (%eval z)

x must be a spectral expression. If the value of x is the spectral constant, then
the result 1s the vector whose elements are effective values of the spectral strips,
otherwise, if the value is a vector, the resultl is Lhe same vector.

IMPLEMENTATION. If the parameter of the corresponding €' function is pointer
to the internal form of a vector the resull is the same pointer. If the parameter
is pointer to the internal form of a spectral constant the result is pointer to the
internal form of the vector determined after the application of Algorithm 2.

EXAMPLE 3.
> ($eval §-—23
@[—24 33 — 9]
> ($eval (+ [1/2 (— 1/4 2)

(setq = (+ 2 3)] [7/2 1 (+ 3 1]
@[4 —3/4 10]
> ($eval §— 375.25/012.26|673.208)
@[—-375.250000 — 12.270000 326.800000]

67/09%)
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2.12. Function $gensp

DEscrIPTION. ($gensp x) (Sgensp =z y).

If one argument is taken, it must be a spectral expression. The result is the spectral
constant of the array which is contained in the given vector or the same spectral
constant given as argument.

If the function is called using two arguments, then first argument is an expression
whose value is integer n, and the second is an expression whose value is number b.
The result is the spectral constant of n spectral strips whose nominal values are b.

IMPLEMENTATION. The corresponding ¢ routine detects the [ollowing cases:
A Tf one pointer to a spectral constant is given as formal parameter, it is returned.
B. If one pointer to the internal form of a vector is given, then the result is pointer
to the internal form of the corresponding spectral constant (Algorithm 1).

. If we use two formal parameters, then first must be pointer to the internal form of
an integer n, and the second pointer to a number 0. Nominal values of the spectral
slrips are equal to b.

EXAMPLE 4.
> (Sgensp  [1 —2 34 2720])
€@ 4+ 0000]9998|0034]2726%
> ($gensp [1.2 3.4942668 229.202])

@%F + 001.200000]003.494267|229.202008

2.13. Functions $rlen i §llen

DEscrIPTION. ($rlen z y) (Sllen =z y)

First argument should evaluate to a spectral constant or a vector. The second
argument is an expression whose value is an integer n. The result is spectral constant
equal to the previous constant, whose strips are lengthened on the right or on the
left for n ligures.

IMPLEMENTATION. The description of the corresponding subprogram follows:
STEP 1. If the first pointer points to the internal form of an vector, transform it
applying Algorithm 2.

STEP 2. Return pointer to the internal form of the lengthened spectrum.

2.14. Function $leon

DESCRIPTION. ($lcon ).

z must be a spectral expression. If z evaluates to a vector it is transformed
into corresponding spectrum (Algorithm 1), The result is spectral constant equal
to the previous constant, obtained after condensation on the left minimizing the
number of figures.

2.15. Function $sinver

DESCRIPTION. (Ssinver a).
@ must be a spectral expression. The result 1s spectral constant representing inverse
spectrum of the spectrum given after evaluation of z.
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2.16. Functions $1 1 $0

DescrirTION. ($1 ) (30 )
The argument is an expression whose value is integer n. Values ol these expressions
are the spectral constants defined in this way: the rhythm is one, and contains n
spectral strips whose nominal values are one (zero).

2.17. Function $efval

DesCrRIPTION. ($efval 2 y)
The first argument must be a spectral expression and the value of the second expres-
sion must be integer n. The result is the nth element of the vector or the effective
value of the nth strip of the given spectral constant.

EXAMPLE 5.
> (¥efval §— 1475|0932|673|1129%  (Sefval §— 11]25[475 1))
@ — 1475
> ($rlen [1 (= 24) 34 2720]

($efval [(/ 2 B) 2= 2/3 1/40)] 2))
@ 4+ 100000]999998]000034]|002726%

2.18. Functions $ident , $= ., 8> , $<

DESCRIPTION. ($ident 2 y) ($= =2y (3> zy) B< zy).
Both arguments must he spectral expressions. The vector given as value of any
argument is converted into corresponding spectral constant. The result is T if the
spectral constants satisly the given relation, otherwise NIL.

3. Several applications of the programming language

The theory of mathematical spectra was applied i the following cases: ma-

Lrices, determinants, manipulations with polynomials, numerical tables, solution of

algebraic and differential equations, arithimetic operations with large integers. In
all of these cases the introduced language could be applied.

3.1. Internal product of two vectors Lel given sequences a;,b;i = 1,... ,n.
Their internal product §:, a;b; is equal to the effective value of the central strip

(i.e. nth strip) of the spectrum obtained alter multiplication of the spectrum of

sequence a and the spectrum of reversed sequence b ([7]).
> (defun inprod(sl s2)
(cond ((= (length sl)(length s2))
(Sefval (§+ sl (Ssinver s2)) (lenglh  s1))
) (¢ (print  "Product_not_found))))
@inprod
> (inprod ~[172 — 2928 181][—1 292 33.1])
@ — 8§49156.900000

3.2. Computing the binomial coefficients For a given & and n, the all
binomial coellicients

k
_),é:l,...,kr; E=1,...n

T

can be computed by using the functions bin and binl defined below.
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> (defun  bin(n)
(prog ((b F1|18))
agann
(cond ((= n 1) (relwn b))
(setg b ($+ FL[1% b))
(set¢ n (1— n))
(go  again)))
> (bin  25)
@$00000001|D0000025]|00000300[00002300[00012650|00053130
00177100]00480700]01081575[02042975]03268760|04457400(05200300]
05200300[04457400|03268760]02042975|01081575]00480700/00177100|
00053130 \00012()’50\U()UU?BUU|UUUUU3UU‘UUU{)UOQB]UUUUUUU 1%
> (defun  binl(n)
(cond (= nl) [11])
(C S+ 111 Gin (= w2)))

3.3. Value of a polynomial Value of a polynomial P(z) = a4 L o4a,
could be oblained as the internal product of vectors [ay ... a,] and [.‘1‘”“1 .. J} , Le.
as the value of the spectral expression:

(Fefval (Be [wi...up](l 2 (& 2z 2)...0 & .8)]) a))

EXAMPLE 6. The value of the polynomial

141.235 + 22 + 1234.025 + ©% — 356 + o + 1235.279 for 2 = 0.1

could be computed as lollows:

> (Sefoal (S [123 —4592 4+ 762 1134
[ 23(+ 23 23)(+ 23 23 23)])
4)
@ —0.900000
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