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ApsTracT.  We introduce @ new concept - m-extendability of topological prop-
erties, and prove that cerlain compaciness-type propertics are T-extendable for un-
countable v. Answering D. B. Shakhmatov’s question we present for any coerdinal
A an evample of @ pseudocompact space X with Gg-diegonal and | X| > X, Under
CH this space X can be made 2-pscudocompact which is stronger than being pseudo-
compact. A ZFC example of a 2-psendocompact space which has no dense relatively
countably compact subspace is also given.

0. Introduction

In some situations the properties of spaces can be characterized by the prop-
erties of their considerably “large” parts. Thus a space is sometimes representable
as an increasing family of its “good” subspaces, while on some step il appeares
that a subspace coincide with a whole space which is therefore “good”. The proofs
of A. V. Arhangelskii’s theorems on the power of first countable compact spaces
Arhg]. and on metrizability of countably compact spaces with point-countable base
Arhy], [Arhs] are classical examples of such results. Our notion of T-extendability
is an attempt to provide a general scheme [or some techniques working in such
situations. In section 1 we introduce the notion of m-extendability and prove that
compactness, countably compactness, psendocompactiess, and some other proper-
ties are T-extendable for any uncountable cardinal 7. Later, we use this fact lor
constructing examples.

Any countably compact space with a Gy-diagonal is metrizable [Chal, [Gru].
This is also true for pseudocompact spaces with a regular G's-diagonal [Reed-j,
but not for all pseudocompact spaces with a G-diagonal, since there exist non-
metrizable pseudocompact Moore spaces. Every pseudocompact Moore space is
separable [Reed,], [Reeds] and hence of cardinality < @. This led D. B. Shakhma-
tov to the question whether the cardinality of a psendocompact space with a Gs-
diagonal can be arbitrarily large.

In section 3 we answer D. B. Shakhmatov's question by presenting for any
cardinal A a psendocompact space X' with (7g-diagonal and | X| > A. In fact, this
space X was constructed in [Ber]. This construction, however, lett some freedom in
choosing certain subfamilies. We restrict this freedom by setting some additional
conditions which provide Gs-diagonal. And some more restrictions help us to make
this space 2-pseudocompact (assuming CH).

Let us recall that [or a cover 4 of X and a subset A C X the n-th star is de-
fined inductively: St"+1(A,7) = St(St"(A4,7),7). For A = {2} we write St"(z,7)
instead of Si"({x}, ).

DeriniTion 0.1, [Mats] A space Y is n-pseudocompact (where n is a natural
number), if for every open cover y of ¥ the cover 4"} = {51 (z,7):z €Y} has a
finite subcover.
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DeriNirioN 0.2 [vDRRT), [Reeds], [Sar], [Tkgs] A space Y is n-starcompact
(where n is a natural number) if for every open cover v ol Y the cover {St"(U,7) :
€ 7} has a finite subcover.

In [Reeds], [vDRRT] n-pseudocompact spaces are called strongly n-starcomp-
act. Strongly n-starcompact implies n-starcompact implies strongly n+ l-starcomp-
act. For a Tychonofl space, countably compact is equivalent to l-pseudocompact,
and pseudocompact is equivalent to 2-starcompact and to (strongly) n-starcompact
for any n > 3. Hence we obtain the following sequence of implications: countably
compact implies l-starcompact implies 2-pseudocompact implies pseudocompact.
None of these implications can be reversed [Mat,], [vDRRT]. So it is natural Lo ask
whether there exist an example like in section 4 but l-starcompact. _

QUEsTION 1. Does there exist a l-starcompact Tychonoll space X with a
(#s-diagonal such that |X| > @?

This problem should be compared with Problem 3.1. from [Reeds]: is each 1-
starcompact Moore space compact. The cardinality of a pseudocompact space with
a point-countable base can be arbitrarily large [Shlk,]. This leads to the following

QuEsTION 2. Let X be a pseudocompact space with a (s-diagonal and with
a point-countable base. Can the cardinality of X be arbitrarily large?

We say that a subspace Y of a space X is countably compact in X provided
every infinite subset A C Y has a limit point in XN. A space X is countably pra-
compact if it has a dense subspace which is countaably compact in X, Countably
pracompact spaces were studied in [Bm] [Mil], [Arha], [Mats] - [\Inl 1]. The terms
“dense countably compactness™ and “weak countably compactness” were also used.
Here we follow the terminology of [Arhy]. It was noted in [Ber], [Mil] that count-
ably pracompact implies pseudocompact, and the examples ol pseudocompact non
countably pracompact spaces were given. Later, the examples of pseudocompact
spaces .\ in which all the sets A, !rH < 7 are closed, discrete, and C™*-embedded,
were constructed in [Shko], [Rez], [Mat,] for arbitrary 7; it is clear that this property
completely destroys countably compactness and even cmmtably pracompactness. So
we can suppose that the place of the countable pracompactness in the compactness
type properties scale is fairly close to countably compactness and far from pseu-
docompactness. 1t has been noted in [Maty], that countably pracompact implies
2-pseudocompact.

In section 5 we give an example of a 2-pseudocompact space which is not
countably pracomipact.

QUESTION 3. Does there exist a l-starcompact Tychonofl space which is not
countably pracompact?

S. Mréwka’s space W = AN U R [Mru] is a classical example of a countably
pracompact space which 18 not countably compact. It is also locally compact,
separable, and Moore. Tt has been shown i [vDRRT] that W is not l-starcompact.

T is constructed as follows: A is open and discrete in ¥, [N = w, R is a
maximal almost disjoint family of infinite subsets of A, |R| > w; (a fmm y of sets is
almost disjoint il the intersection of any two its distinct elements is finite). A basic
neighbourhood of + € R is {r} U (r \Ix where [{ is arbitrary finite subset of .

Since ¥ is a Moore space it has a Gs-diagonal. But |¥] < 2V = @ and if a

countable A" is replaced by uncountable open “discrete set then the space will not
have (7s-diagonal.

However, many examples are based on replacing isolated points from A by

clopen compact subsets [Ber], [Sc], [vDRRT]. [n our case, a special construction of

a hase will provide Gs-diagonal for X

The Gs-diagonal example from section 3 has been constructed by the second
author, while its 2-pseudocompact CI modilication from section 4 and the exaimple
from section 5 were found by the first author. Recently, the authors have learnt
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from [Shks] that S. Watson had also constructed a pseudocompact space with G-
diagonal having arbitrary large cardinality.

1. m-extendable properties

DeriviTiON 1.1, A family A of subspaces of aspace X is called w-conservative
provided for every subfamily B C A and every point 2 € UB there exists a countable
C C B for which z € UC.

DEFINITION [.2. A space X satisfies the property R, (?) where 7 is infinite
ordinal and P is a topological property if there exists an operation P(-) which defines
for every A C X, |A| € 7 a closed subspace P(A) C X such that A C P(4), P(4)
satisfies P and the following conditions hold:

(1) P(A)c P(B)IfACBCX and |B| <,
(2) the family {P(A4): A C X, |A| < r} 1s w-conservative,
(3) if A iz a chain of subset of X, |A| < 7 for any A € A, and |A| < 7 then

PUAd) CU{P(A): A e A},

4) |P(A)| <7l ACX, and |4] < 7.

DeFINTTION 1.3, A topological property P is 7-extendable in a class K of
spaces provided every X C A possesing R, (P) satisfies 7. If K is the class of all
Tychonoll spaces, we shall omit the words “in the class 7.

The following theorem will be used in section 6.

TeoreMm L1, w-psevdocompactness is t-extendable for every wncountable
cardinal T and every n € w.

PRrROOF. Supose v is an open cover of X, and 1" does not have a finile sub-
cover, while X satisfies the property R, (npe) for some inflinite cardinal r, where npc
denotes n-psendocompactness. Let us compose an inereasing chain {X, o <wy}
of subspaces of X for which |X,| < 7 for all &« < w;. Put Xy = {ag} where
xo € N is arbitrary point. Let oo < wy, and the subspaces X, have been con-
structed for all v < «o. Denote K, the family of all finite subsets of the set
My = P(U{Xy 1y <a}). Tor every K € K, pick a point x5 € X \ St"(K,7)
and put X, = My U {ex : K € Ky}, 1t is clear, that |M,| < 7, and thus |[Ky| < 7
and [X,| <1

Put X* = U{X, :a <wy} and P* = P(X*). As P* is npec, there exists
a finite A" C P* for which St*(K™*,y) D P*. By (3) [rom Definition 1.2., we
have K* C P* C U{P(X,):a <w;i}. The property (2) implies that for every
k€ I there exists an ordinal o(k) < wy for which & € U{P(X.) 1o < a(k)}.
Put a” = maa {a(k): k€ K™}, Then K* C U{P(X,) o < a*}. But P(X4) =
PU{N, iy <a}) = Mo © Xagr, which implies 87 C U{Xap1 :a <ot} C
Naeg1 C P(Xuog1) € Mueyn and wgs € Myeys C X", which contradicts n-
pseudocompactness of P,

The same proof works for

TugoreM 1.2.  n-starcompaciness is T-extendable for any uncountable cardi-
nal T and every n € w.

CoroLLARY 1.1. Compaciness, countably compaciness and pseudocompact-
ness are T-extendable.

Proor. Compactness can be considered as (-starcompactness, countably co-
mpact is equivalent with 1-pseudocompact, and pseudocompact - with 2-starcom-
pact.

2. Berner’s example x = NUS
Here we describe a slightly modified consfruction from [Ber]. Thus, we take
arbitrary cardinal 7 > @% instead of @T in [Ber], and restrict the freedom of choice
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of certain “arbitrary family”. Denote D(r) the discrete space of power r > @7,
C = D% the Cantor set, and A = C x D(r) the cartesian product. Choose any

maximal (with respect to inclusion) almost digjoint sublamily Ty of the family of

all countable subsets of D(r).
Denote Sy the fammly of all sequences of s = (U, x {an} :n € w) kind where
U, is a nonempty clopen subset of C and «,, € D(7) (we consider U, x {a,} as a
subset of C x D(7) = N) such that:
1) n#m= a, # am,
NntEm=>U,NU, =0,
(3) the set A(s) = {an : n Ew} is an element of Dy.
Let us say that a subfamily 7 C S is refined if the following condition holds:

s=(Unx{an}:n€w)ET D¢ = (Vi x {Bn} :mew)

.
) = the set Iy = {(n,m) Ew X w: & = B, and U, NV, # 0} is finite,
The Berner’s space x is A/US, where & is a maximal (with respect to inclusion)
refined subfamily of &.

The topology on x is defined as follows: A~ with its product topology is an
open subspace while a basic neighbourhood of the point s = (U, x {a,} :n € w) is
Om(s) = {s}UU{l, x {ap} :n > m} where m € w.

It has been shown in [Ber] that y is pseudocompact but is not countably pra-
compact.

3. (s-diagonal for y

Generally, x does not have a Gg-diagonal, but with a special choice of § it
does.

Let us consider the Cantor set C as a subspace of the unit interval of the real
line with its usual metric; diem(A) denotes the diameter of the set A4 C IE.

We will say that a sequence s = (U, x {a,,} 1 n € w) is quick il [or every n € w

(**) diam(U{U,, :m > n}) < 1/2".

Lemma 3.1, For every sequence s = (Up X {ap} i n Ew) there exists an in-
creasing sequence of integers (n(m) : m € w) and a quick sequence t = (Vi X {fBn } :
m € w) such that V,,, C Un(m) and cnim) = Bm for every m € w.

Proor. Choose a point 2, € U, for every m € w. The sequence A =
(xp : n € w) has at least one limit point x#* € (3. Then there exist a sub-
sequernce (z::ﬂ(m) :m €w) of A such that |2itm) = #¥] < 1/27%2 . Put W, =
B (Setras 1/2’1("‘-‘)+2)DU,1(,") where B(z, ¢)is a e-ball around = in C, and 3, = On(m)
for each m € w, and take any clopen neighbourhood V,, such that Ty € Vi '©
Win. ‘

To show that ¢ = (V;,, x {fin} : m € w) is quick let us suppose that 41,y €
U{Vin : m > n} for some n € w. Then y; € V;,,, for i = 1,2 and some my, my > n,
and we have |y1 - y2| < |y1 _a?n(_m,])l + |-'L'n(m.1j —= gt | + |$* _mn(mg)] + l:rn.(mg) = y.2| <
1/27?11+.3 + 1/2m,+2 A1 1/2mg+3 + 1/2ﬂ12+2 S 1/2114»:] -+ 1/271+2 + 1/2n+2 i 1/211.+2 -
1/2n

ProrosiTion 3.1. The family & can be chosen to consisi of the quick se-
quences.

Proor. Let §; C &y be the family of all quick sequences. It follows from
Lemma 3.1 that a maximal refined subfamily of S, is also a maximal refined sub-
family of Sp.
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~ Provosrrion 3.2 [f S consist of quick sequences, lhen y = NUS has a
Gls-diagonal.

Proor. We shall construct a sequence (v, ' n € w) of open covers of y such
that

(FFH) N{St(z,7n) :n Ew} = {x} for each z € X.

A space has such a % Seqiienge if and only if it has a (Gs-diagonal [Eng]. Put ¥, =
Y1 U Yn 2 where ’y“ 1 = {U x {a} : U is clopen in C, diam(U) < 1/2", o« € D(7)},
and 9,2 = {On(s) : s € S}.

Ta (he( ko ( ***) let us note that if @ € § then Si(z,v,) = O,(x), and
N{St(x,y) : n € .u} = N{Ou(z) : z € w} = {z}. Now, let & = (zg,0) € N,
Suppose y € N{St(x,9n) : n €w}. Then y € § is impossible by the above remark
since y € St(z,7) 1ff ¢ € St(y,y). So, we have y = (yo,8) € N. Then yo = x¢ for
otherwise y & St(z,7y,) for n > 4!og)|.10 — ygl|. Finally, @« = g since for any n € w
and any W € v, (z,a) € W 3 (2,8) = (e = 8). So, x = y which completes the
proof.

4. Making y 2-pseudocompact

Let A € Dy. We will call a sequence & = ((z,,@,) : n € w) of points of N
A-fine if the following holds:
1) @y & o for n# m,
52) tn # oy, for n #m,
(3) {a, :new}lC A,
(4) |2y —@m| € Lf2HemF for any n,mEw.

A sequence is fine if it is A-fine for some A € Dy. The families of all A-line
sequences and of all fine sequences we will denote Fy and F| respectively.

‘ For A € Dy denote S(A) = {s € S : A(s) = A}. Obviously, |S(A)] = @, and
.Fl‘ = @, :

Henceforth, assume CH.

Let us order Fq on wy type: Fa = {1 A < w;}. We will inductively define an
increasing chain {S5(A4) : A < w} of subfamilies of S(A) such that for each A < w;
the following conditions hold:

@ T = 5)\(4) satisfies (*),
(1) for &), = ((wn,crn) n € w) there is a sequence s = (U x {fn} :m Ew) €

Sx(A) and increasing sequences of integers {n; : i € w} and {m,; : ¢ € w} such

that a” = Bm,, and z,, € U,y,, for each 1Ew,
(i11) Sa (A Lb coumah
Put

Sum)oqc 0 < AU < wy and the families Sy (A) have heen constructed for all
A< A with (1), (ii), (iii) satisfied. Put SQD(A) = U{Sa(A) : A < Ag). LE (i1) holds
for A = Ay and S'EO(A} as Sy(A) then put Sy, (A4) = SE”(A). If not, let us order the
countable family SgU(A} on typew : SP\O(A) = {sp ke w}; sp = {Uny X {Bm(k)}
m € w} for each k € w. We have £, = ((zﬂ,an) :n € w). For each n € w denote
Fyo= W{Un(k) : k < n,Bn(k) = an,and 20 & U,,(k)}. Then F, is clopen as a
finite Lmlon of c]oan qets, and 22 ¢ F,. The1e is, however, a clopen neighbourhood
V,, of 28 such that 22 € V,, C B(:Ln,l/Q”"' 1. Put By = (V x {ap} in €w), and
SnalA) = S9(A) U {82, }.

We shall check that Sy,(A) satisfies (i), (ii), (iii). If s,s" € Sy,(A) then either
they both belong to .5'20 (A), and hence to Sy (A) for some A" < Xy, or oue of them,
say §', is equal 55,. In the first case (*) holds by the inductive supposition. Consider
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the second case. We have s = s, = (Un(k) x {fn(k)} @ m € w) lor some k < w.
Since (ii) did not hold for A = Ao, and S} (A) as Sx(A4), there is a number | < w

such that if n, m > [ then oy # By, or .»:;9, ¢ Um. Put 7 = maz(k,l). Then for each
n,m > j we have a, # B, or V, NU,; = 0 by the definition of V.

(i1) and (iii) follow directly from the construction. ‘

To prove that sy, is a quick sequence, let us suppose that y;,ys € U{V;,, 1 m >
n} for some n € w. Then y; € V,,, for + = 1,2 and some my, ms > n, and we have
!Ul == y3| S iyl = "En_(ml li + l;‘:n,(m 1} - "E*|+ “”* - fi:n(m-_i‘]| + 137”,_[_7173) - UJ‘ S l/zml-{—j +
1/2ml+2 S 1/ng+'_' + l/2m-_.+2 S 1/21)+2 + 1/-zn.+2 + 1/2u+‘_£ + 1/‘211.+i' = 1/2“

Finally, put S,,(A4) = U{Sx(A4) : A < wy}. Obviously, S,, (A) consist of quick
sequences.

CLaim 1. S,,(A) is a mazimal subfamily of S(A) with respect to (*).

Proor. S,,(A) satisfies (¥) because so does S3(A4) lor each ) < wy, and any
two elements of S, (A) belong to Sy (A) for some A < wy. If sg = (W, x {an}:n €
w) € S(A)\ Su, (A) is a quick sequence, then, choosing xz, € W, for each n € w we
obtain an A-fine sequence & = ((zn,@s) : 7 € w) which coinside with £, for some
A < wi. Then the pair s, s where s is from (i), does not satisfy (*) and thus so
can not be added to S, (A) without loosing (*).

Put § = U{S. (4): Ae Dy}

CrLaiM 2. 8 salisfies (*).

Indeed, if §,5" € & then either they are elements of the same S, (A4) and
satisly (*) by properties of S, (A), or § € S,,(4), and S" € S, (A') with A = A’
then AN A’ is finite, and (*) holds agaiu.

CrLam 3. 8 is a mazimal subfamily of Sy with respeet Lo (*).

Suppose sy = (([/,,@,) :n Ew) € Sy \ S. Then A(sy) = {og, s e w} € Dy,
and since S, (A(sp)) is maximal there is an element s € S, (A(sq)) such that the
pair (sg,5) does not satisfy (*), and thus sy can not be added Lo §.

So, our version of y = N U S is pseudocompact, and has a Gg-diagonal since
S consists of quick sequences. Now, we will show that our y is 2-pseudocompact.
By Theorem 1.1, it suffies to prove that it satisfies the property Ra(2pc) where 2pe
is 2-pseudocompactness. In fact, we will prove that y satisfies Ra(cp) where cp is
countable pracompactness. :

Suppose M C x,|M| < @ Denote M’ = M UU{Oy(x) : 2 € M NS}
Then |M'| < @ Put D(M) = {d € D(r) : 3z € C with (x,d) € M'}, and
P(M)=C x D(M).

We shall prove that so defined operation M — P(Af) satisfies the properties
(1) - (4) from Definition 1.2,

(1) is obvious: if My C My then M| C M, D(M,) C D(M.) and P(M;) C
P(Ms).

The family {P(M): M € y, |M| < @} is w-conservative since x is first count-
able.

To check (3), suppose A is a family of subsets of y, |A| < 7 and |M| < 7 for
any M € A. Then |[UA| < 7 and

P(UA)=C x D(UA) =C x {d € D(r) : 3o € C with (2,d) € (UA)'}
=Cx{de D(r): 3z el with (z,d) e U{M': M € A}}

=Cx (U{{de D(r):Fx € C with (¢, d) e M'}: M € A})
=CxU{DM): Me A} =u{Cx D(M): M e A}

={UCx D(M): M €A} =U{P(M): M € A}.

- —
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Finally, the next claim provides (4):

Cramm 4. IfL e D7), |L| <@, then |C x L] <@,

Indeed, O'x L = (Cx L)U{s € 8: O4(s) N (C x L) # @ for each i € w} =
(Cx L)UU{Su,(A) : A € Dy, ANL is infinite}. We have |[Cx L| = @, [S,,(A)] = @
for each A € Dy, and |{4A € Dy : AN L isinfinite }| < @ since ANL = A'NL
implies A = A"if A, A" € Dy (and ANL is infinite), and there is at most @ countable
subsets of L. So, [Cx L| =@+ @ @ = @.

To conclude the proof of the 2-pseudocompactness of y, we must show that
P(M) is countably pracompact for any M € y with |M| < @. It suffies, however,
to prove the following:

Cram 5. € x L is countably pracompact if L C D(7), |L] < @.

Proor. If L is finite then € x L. = C x L is compact. Suppose it is infinite. C
has @ pairwise disjoint dense subspaces [Pyt]. Choose such a subspace Cy for each
de L,sothat CgNCy =0 ford # d. Put Y = U{Cqy x {d} : d € L}. Then Y
is dense in C x L, and hence in € x L. Let us show that Y is countably compact
in Cx L. Suppose € = ((&tn,0n) : 1 € w) be a sequence of points in Y. If the
set A(€) ={d e L :«a, = dforsomen € w} is finite then £ has an accumulation
point in € x {d} for some d € A(). Il A(¢) is infinite we can choose a subsequence
7 = ((#n;, 0n,) 11 €w) with pairwise distinet o, — 5. In this case, z,, — s are
distinet too, because they belong to the different €y — 5. The sequence 7 has a fine
subsequence y which satisfies (it} with some s € §. Then every neighbourhood of s
in y meets infinitely many elements of .

By the way, we found that the weak countably compactness is not m-extendable
in contrast to countably compactness and pseudocompactness.

5. One more example

[n the previous section we constructed a CH example of a 2-pseudocompact
space which is nol countably pracompact. Here we give a ZI'C' example of such a

space. Unfortunalely, it has no Gs-diagonal (in fact, 1t is not even [irst countable).

We are going to construct a space £ = AV UD where A is the same that in the
space x = N U S considered above: N = C x D(r), 7 > @*. As in section 4, we
denote by F the family of all fine sequences.

Choose a maximal subfamily D of 7 according to the following property:

() d=(zp :new),d =(yp new),d#d =2, # ym
for all but finitely many pairs (n, m).

The topology of N UTD is defined as follows: N (with the product topology)
is an open subspace of N UD. To define local bases in the points of D, for every
d = ((an, ) :n € w) €D denote by F(d) the set of all mappings [ : w — T(N)

where 7(N) is the topology of A) for which f(n) is a clopen neighbourhood of
) in C x {ay } for every n € w. However, for each d € D, f € F(d), and n € w
put O n(d) = {d} UU{f(m) : m > n} andO;n(d) = Op.(d)U{d € D : Vf €
F(d')An" € w : f(m) N f'(m) £ 0 for m > maz(n,n’)}.

Note that if d = ((a;,,a,) : m € w) € D and d # d’ then d' € Of,(d) &
In' > n:(al,,al,) € f(m),¥m > n' (this is a consequence of the fact that the
sets f(n) are clopen in A). This implies that d' is in O ,(d) together with its
neighbourhood of O ns type and therefore the family of sets T(A) U {0y (d) :
deD,f e F(d),n € w} is a base for topology on AU D and the sets O ,(d) are
clopen in this topology. The property (*v) implies that AU D is a Hausdorff space:
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ifdd € D,d= ({an,an) : n € w),d = ((¢,,a],) : n € w), then cither the set
{an :n €w}nN{al :n €w} is finite and then Oy ,,(d) N ()lffln-,.(d )= 0 forany f €
F(d), f € F(d') and m > maz{n : In' 1 o, = o/} + mar{n’ :In 1 a, = al,} +1,
or (o :n €w) = (o, : » € w) - then eventually @, # ans, and we can choo-c
m € w, and - for every n > m - disjoint clopen neighbourhood V},, Vi C C x {an}
of a, and d,; set f(n) = Vi, f/(n') = V! for n > m - then O 1 (d) N Oy m(d') = 6.

The existence of a base, conslsting of clopen sets together with 75 implies that
N UD is a Tychonoll space.

Lemma [Ber].  Suppose (O; i € w) is a sequence of nonemply sels in C. Then
there exisls a subsequence (OT;U) :J Ew) and nonempty open sets V; C O,y such
that VNV =0 for j # k.

Lrt us show now that AN UD is p\eudocompa(l Otherwise, there exists a
sequence § = (O; x {a} 1 i € w) where O; is clopen in C for every i € w, and the

family & is Cll*:(l(‘le in AVUD. Using Lemma, choose a subsequence ( (1) 1 € w),
the open sets ¥; C Oy, and points z; € 1/ for which V; N = 0 if F A B
Let us consider a sequence & = ({2;} x {“!U)} J € w) ol points of A, As D is

maximal with respect to (*), there exists a sequence d = (y, : n € w) € D for
which ynery = i) ¥ {0y} for some increasing sequences (j(k) : & € w) and
(n(k) : k €w). This point d (leStIO}Gs the discretness of £. A contradiction.

The prool of the fact that AU D is not countably pra.compacl. is similar to the
corresponding proof from [Ber]: il ¥ is dense in N UD, then Y N (€ x {a}) £ 0 for
every a € D(@T), and so [V| > @. As [C| = @, there exists an element ¢ € C for
which the set Y N ({c} x D(@1)) is iufinite. Let d = ((C, &x;) 17 € w) be a sequence
of its elements consisting of pairwise distinct points. This sequence has no limit
points in AN UD: il & = ((z,,a),) : n € w), thcn C' = x, for at most one x, -
denote this n as n*: for all n > n* choose clopen sets V,, such that C' ¢ V,, 3 x,.
Put f(n) =V, for all n > n". Then O,«p1 ;(d)Nd =10

Cramm.  P(A) is countably pracompact if | M| < @.

The proof is the same to that for Claim 5 from the previous section. This claim
implies that P{(M) is 2-pseudacompact i |M| < @.

Now, suppose 4 C ANUD,|A| < @ Denote M(4) = {o € D(@T) : Jo €
C for which (z,a) € AU{a € D (C*): 3a = ((zn,an) i n €w) € DN A for which
a,, = o for some ?1 Ew} and P(A) = C x M(A).

Clearly, |M(A)] < @ and |P(A)] < @ if |4] < @, j.e. condition (4) from
Definition 1.2 for 7 = @ holds. Londlhlon (1) is also true.

Check (2): let S be a family of subsets of N UD, |A] < 7 [or every 4 € S,
and z € UJP(A): A S If e e A then o € P(4) for some A € 5 thal provides

the desired result. Suppose x € D. Note Lhat [or every basic neighbourhood O of

r the set A = {o € D(7) : (x, @) € O for some 2 € C} is countable, and A contains
an infinite subset Ay such that for every a € Ay we may choose some A, € S for
which € x {a} C P(Aq) holds. Then @ € U{P(A,) : «« € Ag}.

No“ check (3): suppose A is a family of subsets of power < @ in AU D, and
ote, that M (UA) = U{M(A): A € A}, and so P(UA) = C x M{UA) =
C x ( U{M A): A€ AN =U{C'x M(A): Ae A} = U{P(A) : A € A}.

Fmallv N U D satisfies the Ra(2pc) condition. From Theorem 1.1 we get
Z-D:eudocompactness of NUD.
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