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ABSTRACT. For a space X, lel expy X, expy; X, expyy X be the collection
of all nonempty closed subsets of X with the finite, locally finite, countable locally
finite topology, respectively. Some separations properties of the space expyy X are
investigaled. If exp; X is a real-compact space, then expgy X is a real-compact
space. If X is a Lindeldf space, then exp;y X 15 a real-compact space. A simple
ezample show that there exists a non Lindeldf space X such that exp;; X is a real-
compact space.

1. Preliminaries

Throughout this paper all spaces are assumed to be at least Hausdorff. The
closure of a set A C (X, ) is denoted by [A]x , [A], or [A].

Let (X, T) be aspace. Then exp X denotes the collection of all nonempty closed
subsets of X and Z(X) the collection of all nonempty compact subsets of X . If &/
= {U,,s € S} is a family of subsets of X we write

{U)=(Us,seS)={Feexp(X): FCUU,and FNU, # 0,5 € S}

The finite, locally finite, countable locally finite topology Tiir, Tipin s Telfin (0N
exp X is constructed taking as a base the sets of the form (i), where U is a
finite, locally finite, countable locally finite family of open subsets of X ( 2], 4],
(8], [9] ). We denote the hyperspace (exp X, 7yin), (exp X, Tifin), (€xp X, Terfin) by
expy X, exp;p X, exp,y X, respectively. If 1y, = 7y, we denote exp; X and
exp;; X by expX. Since ( Z(X), 7pin) = (Z(X),7ipin) we adopt the simplified
notation Z(X). :

Since 7fin C Tifin, then the identity mapping Id : exp;p X —+ expsX is a
continuous mapping.

Note that (see [10])

(@) Tpin = Tipin iff each locally finite family of open subsets of X is finite.
(b) Tf,'n = Tifin iff [Z(X)]U,jn = €Xp X.

LemMMma 1.1 ([10]). LetU ={U,:s€ S} and V= {V; : t € T} be two locally
finite collections of non empty open subset of X. Then (U) C (V) iff U C UU and
each member of V contains a member of U
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Lemma 1.2, Letd ={U; :s €S} and V = {V, : s € S} be two locally finite
collections of non emply open subsets of X, then:
(8) [{Us : 5 € SY]nijin = {[Uslx 15 €5).
(b) I [Vilx C U, Vs €5, then [(Mliyin C ().

2. Separation properties
Our next theorems deals with separation properties of exp;; X and exp; X.

THEOREM 2.1. The following condiiions are equivalent:
(a) X is regular.
(b) exp; X is Hausdorff.
(c) expy X is Hausdorff.
Proor. For (a) <= (b) see [4], [9] and for (a) <= (c) see [10].

THEOREM 2.2. The following condilions are equivaleni:
(a) X is normal.
(b) expy X is regular.
(c) expy X is completely regular.
(d) exp;; X is regular.
(e) expyy X is completely regular.

Proor. The proof of (a) <= (b) <= (¢) is given, for example in [4], [9].

The proof of the equivalence (a) <= (d) <= (e) is a modification of the proof
of Theorem 3.8. in [4].

(a) = (e). Let (X, 7) be a normal space, Y = {U; : s € S} a locally finite
family and Fy € (). The family {U,, X\ Fy, s € S} is a open covering of X. Then
there exists a closed covering {F,,F, : s €S, p#stof X, F, CU,, F, C X\ Fy.
Suppose that F, N Fy # 0,Vs € S (if not, set F! = F, U{z,},z, € Us N Fy ). By
Urysohn lemma ([3], p. 75. ), for s € § there exists f;, : X — [0,1] such that
F(f) =0and f,(X\U,)=1. Forr e (0,1),let ¥ = {z € X : fi(z) < 7).
The family {V] : s € S} is a locally finite family of open subsets of X, for each
r €(0,1).

Let Wy = (V] :s € 8). If g, € (0,1),q < 7, then [Vf]x C V] and, by Lemma
1.2. it follows that [W,]iy C W.

Let 7y = exp X \ (/) . Then the set F; is a closed subset of exp;; X and
Fo ¢ Frie. Fin{Fy} =0. For r,7" € D,r < r' where the set D is dense in [0, 1]
we have

{Fo} oW € Wiy CW, CexpX \ FL = {td).

By Theorem 2.17. in [4], there «vists a mapping ¢ : exp;; X — [0,1], such that
©(Fo) = 0 and @(exp X \ {4)) |. Thus the hyperspace expy; X is a completely
regular space.

(e) = (d). This is obvious

(d) = (a). Let Fy, Fy €exp X and Fo N F; = 0. The set W = (X \ F}) is an
open set in exp;; X and Fy € W. Since exp;; X is a regular space, then there exists
a locally finite family {U, : s € S} of open subsets of X such that Fy € (U, : s € S)
and [(Us,s € S)]iy C W. Therefore Fy € U = U{U,,s € S} , U is an open set in X
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and o CUC X\ F. H[U]lxNF, =0ie [Ulx C X\ F, then X is a normal
space.

Suppose that [U]x N Fy # 0. Since {U, : s € S} is a locally finite family, then
[U{U; : s € S}x = U{[Us]x : s € S} and we have:

U{([Us]N F1),s € S} = (U{U, :s e SHNF = [U{U, : s € SHx N Fy # 0.

There exists an index ¢ € S such that [U;]x N Fy # 0. For every s € S, let
z, € [Us]x,s # ¢, and z; € [Uy]x N Fy. The set F = {z, : s € §} is a closed subset
of X. Every neighbourhood of F' € exp;; X contains some point of (U, : s € S) and
so F' € [(Us : s € )iy C W = (X \ F1). This contradicts the fact that ' N Fy # 0.
Thus (d) = (a).

In [5] J. Keesling ( see also N. Veli¢ko [12] ) has proved the following statement.

THEOREM 2.3. The hyperspace expy X is a normal space if and only if X is
@ compact space.

There exists a noncompact space X such that exp, 7 X is a normal space. For
example, the space X = D(Ro) ( D(Xo) the discrete space of power R ), is a
noncompact space, and exp;; D(No) is a normal space (the discrete space of power
280},

The following statement is valid.

TueoreM 2.4. The following conditions are equivalent:

(a) exp;; X is Lindeldf.
(b) X is compact (exp;; X is compact).

Proor. The identity mapping Id : exp;; X — exp; X is a continuous
mapping. If exp;; X is a Lindelof space, expy X 1s also Lindelof and hence a normal
space. By Theorem 2.3. X is a compact space.

A space X is said to be weakly Lindeldf if every open covering {U, : s € S} of
X, has a countable subcovering {Us, : i € N} such that U{U,, : i € N} is a dense
set in X (see [3]).

LEmMA 2.5. Let X be a weakly Lindelf space. Then every locally finite family
of open sets in X is countable (see [3] p. 456 ).

Lemma 2.5. implies

LEMMA 2.6, Let X be a feebly Lindelof space. Then

(a) my = ray,
(b) every (U) € niy is a Gs-set in expy X.

3. Real-compactness

Let X be a completely regular space, ¢X a compactification of X and ¢ :
X — cX be a homeomorphic embedding of X into ¢X such that [¢(X)].x = cX.
In this section we shall identify the space X with the subspace ¢(X) C ¢X of a
compactification ¢X of X. The Stone-Cech compactification of X is denoted by
BX.

In this section we will assume that X is normal so that expy X, exp;; X and
exp.iy X are completely regular spaces. Hence, these three spaces have T} compact—
ifications. The following statement was proved in [6]




272 M. Stanojevié

LEMMA 3.1. Let X be a normal space. Then exp X 15 a compactification of
the space exp; X.

The mapping j : expy X — exp BX defined by j(F) = [Flsx VF € exp; X is
a homeomorphic embedding.

A characterization of real-compactness is the following ( see [1] p. 243.)

LEmMa 3.2. A completely regular space Y is real-compact if and only if there
extsts a compactification bY of V', such that for every point yo € bY \Y there exwisis
a G5 set G in bY such that 2o € G C Y \ Y.

For exp; X, Popov showed in [11] that if X is a Lindeldf space then the com-
pactification exp BX of exp; X satisfies the conditions of Lemma 3.2. Using this,
Popov showed the following theorem:

THEOREM 3.3. Let X be a Lindelof space. Then the space exp; X is real-
compact.
The following result is valid:

LemMa 3.4. Ifexpy X is a real-compact space, then exp,; X 1s also a real-
compacl space.

Proor. Let expy X be areal-compact space and let b exp; X denote a compa-
ctification which satisfies the condition of Lemma 3.2. The mapping j : exp,; X —
expy X C bexp; X given by: VF € exp.; X, j(F) = W(Id(F)) = b(F) € b(exp; X)
C bexp; X is a continuous one to one mapping. Then there exists a compactification
cexpy; X and an extension, j: cexpyy X — bexp; X of j (see [1] p. 334).

We are going to show that cexp,; X also satisfies the condition of Lemma 3.2.

Let T € cexp,y X \ expyy X and j(T') = T E bexpy X.

(i) (1) = = bexp; X \ exp; X. Then there exists a G5 -set G C bexp; X
such that T € G C bexp; X \ exp; X. Then we have that 77YG) is a Gy -set, and

Teji g cC cexp.; X \ exp,y; X.

(ii) (T) = Fy € expy X. Let Fy = j(F.), F. €expy; X (Fy = F, as elements
of exp X).

Let U(T) and U(F,) be disjoint neighbourhoods of the points T" and F, in
cexp,; X and

U(F) N &y X = { (U1,Us, ..., Ug), %f F, ?s countably compact ,
(O : n€N), if F, is not countably compact.

Let now V(Fy) be a G5 -set in bexp; X such that j(F.) = Fy € V(Fy) and

Uy o U350 8} if F; is countably compact,
V(Ff)Nexp; X = ;
! I (O, : neN), if F; is not countably compact,

((U]_,...,Uk) :j((U1, o Uk), (Oﬂ ne N) = J((O" T ne N)))
Suppose that for every G5 - set G, T € G C U(Fy), G Nexp,y; X # O holds.
Then 5(G) ¢ V(Fy), which contradicts the fact that j is a continuous mapping.
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Hence, there exists a Gs - set Go such that T'€ Go C cexpyy X \ expyy X, or
JT) € bexpy X \ exp; X.

The following statement ( which can be also proved directly) is a consequence
of Theorem 3.3. and Lemma 3.4.

THEOREM 3.5. If X is a Lindelof space, then the space exp;; X is a real -
compact space.

There exists a space X which is not Lindelof and exp;; X is a real - compact
space. Let m > N be a non-measurable cardinal number {for example m = ¢ ).
Then the space D(m) is not Lindelof, and the space exp;; D(m) = [)(2™) is real -
compact.
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