SOME PROPERTIES OF LOCALLY FINITE HYPERSPACE TOPOLOGY

Momir Stanojević

(Received 10.05.1992.; Revised 01.07.1992.)

ABSTRACT. For a space X, let $\exp_f X$, $\exp_{lf} X$, $\exp_{clf} X$ be the collection of all nonempty closed subsets of X with the finite, locally finite, countable locally finite topology, respectively. Some separations properties of the space $\exp_{lf} X$ are investigated. If $\exp_f X$ is a real-compact space, then $\exp_{clf} X$ is a real-compact space. If X is a Lindelöf space, then $\exp_{lf} X$ is a real-compact space. A simple example show that there exists a non Lindelöf space X such that $\exp_{lf} X$ is a real-compact space.

1. Preliminaries

Throughout this paper all spaces are assumed to be at least Hausdorff. The closure of a set $A \subset (X, \tau)$ is denoted by $[A]_X$, $[A]_{\tau}$ or [A].

Let (X, τ) be a space. Then $\exp X$ denotes the collection of all nonempty closed subsets of X and $\mathcal{Z}(X)$ the collection of all nonempty compact subsets of X. If $\mathcal{U} = \{U_s, s \in S\}$ is a family of subsets of X we write

$$\langle \mathcal{U} \rangle = \langle U_s, s \in S \rangle = \{ F \in \exp(X) : F \subset \cup U_s \ and \ F \cap U_s \neq \emptyset, s \in S \}$$

The finite, locally finite, countable locally finite topology $\tau_{fin}, \tau_{lfin}, \tau_{clfin}$ on exp X is constructed taking as a base the sets of the form $\langle \mathcal{U} \rangle$, where \mathcal{U} is a finite, locally finite, countable locally finite family of open subsets of X ([2], [4], [8], [9]). We denote the hyperspace (exp X, τ_{fin}), (exp X, τ_{lfin}), (exp X, τ_{clfin}) by exp f(X), exp f(X), respectively. If f(X) is denote exp f(X) and exp f(X) by exp f(X). Since (f(X)), f(X)0 we adopt the simplified notation f(X)1.

Since $\tau_{fin} \subseteq \tau_{lfin}$, then the identity mapping $Id : \exp_{lf} X \longrightarrow \exp_{f} X$ is a continuous mapping.

Note that (see [10])

(a) $\tau_{fin} = \tau_{lfin}$ iff each locally finite family of open subsets of X is finite.

(b) $\tau_{fin} = \tau_{lfin} \text{ iff } [\mathcal{Z}(X)]_{lfin} = \exp X.$

LEMMA 1.1 ([10]). Let $\mathcal{U} = \{U_s : s \in S\}$ and $\mathcal{V} = \{V_t : t \in T\}$ be two locally finite collections of non empty open subset of X. Then $\langle \mathcal{U} \rangle \subseteq \langle \mathcal{V} \rangle$ iff $\cup \mathcal{U} \subseteq \cup \mathcal{U}$ and each member of \mathcal{V} contains a member of \mathcal{U} .

¹⁹⁹¹ Mathematics Subject Classification: 54B20, 54D50.

LEMMA 1.2. Let $\mathcal{U} = \{U_s : s \in S\}$ and $\mathcal{V} = \{V_s : s \in S\}$ be two locally finite collections of non empty open subsets of X, then:

(a) $[\langle U_s : s \in S \rangle]_{\tau_{lfin}} = \langle [U_s]_X : s \in S \rangle$.

(b) If $[V_s]_X \subseteq U_s \ \forall s \in S$, then $[\langle V \rangle]_{lfin} \subseteq \langle U \rangle$.

2. Separation properties

Our next theorems deals with separation properties of $\exp_{lf} X$ and $\exp_f X$.

Theorem 2.1. The following conditions are equivalent:

(a) X is regular.

(b) exp X is Hausdorff.

(c) explf X is Hausdorff.

PROOF. For (a) \iff (b) see [4], [9] and for (a) \iff (c) see [10].

THEOREM 2.2. The following conditions are equivalent:

(a) X is normal.

(b) exp X is regular.

(c) expf X is completely regular.

(d) exp_{lf} X is regular.

(e) $\exp_{lf} X$ is completely regular.

PROOF. The proof of (a) \iff (b) \iff (c) is given, for example in [4], [9].

The proof of the equivalence (a) \iff (d) \iff (e) is a modification of the proof of Theorem 3.8. in [4].

(a) \Longrightarrow (e). Let (X,τ) be a normal space, $\mathcal{U}=\{U_s:s\in S\}$ a locally finite family and $F_0\in \langle \mathcal{U}\rangle$. The family $\{U_s,X\setminus F_0,s\in S\}$ is a open covering of X. Then there exists a closed covering $\{F_s,F_p:s\in S,\ p\neq s\}$ of $X,F_s\subset U_s,\ F_p\subset X\setminus F_0$. Suppose that $F_s\cap F_0\neq\emptyset, \forall s\in S$ (if not, set $F_s'=F_s\cup\{x_s\},x_s\in U_s\cap F_0$). By Urysohn lemma ([3], p. 75.), for $s\in S$ there exists $f_s:X\longrightarrow [0,1]$ such that $f_s(F_s)=0$ and $f_s(X\setminus U_s)=1$. For $r\in (0,1)$, let $V_s^r=\{x\in X:f_s(x)< r\}$. The family $\{V_s^r:s\in S\}$ is a locally finite family of open subsets of X, for each $r\in (0,1)$.

Let $W_r = \langle V_s^r : s \in S \rangle$. If $q, r \in (0, 1), q < r$, then $[V_s^q]_X \subset V_s^r$ and, by Lemma 1.2. it follows that $[W_q]_{lf} \subset W_r$.

Let $\mathcal{F}_1 = \exp X \setminus \langle \mathcal{U} \rangle$. Then the set \mathcal{F}_1 is a closed subset of $\exp_{lf} X$ and $F_0 \notin \mathcal{F}_1$ i.e. $\mathcal{F}_1 \cap \{F_0\} = \emptyset$. For $r, r' \in D, r < r'$ where the set D is dense in [0, 1], we have

$$\{F_0\} \subset \mathcal{W}_r \subset [\mathcal{W}_r]_U \subset \mathcal{W}_{r'} \subset \exp X \setminus \mathcal{F}_1 = \langle \mathcal{U} \rangle.$$

By Theorem 2.17. in [4], there exists a mapping $\varphi : \exp_{lf} X \longrightarrow [0,1]$, such that $\varphi(F_0) = 0$ and $\varphi(\exp X \setminus \langle \mathcal{U} \rangle)$. Thus the hyperspace $\exp_{lf} X$ is a completely regular space.

(e) ⇒ (d). This is obvious.

(d) \Longrightarrow (a). Let $F_0, F_1 \in \exp X$ and $F_0 \cap F_1 = \emptyset$. The set $\mathcal{W} = \langle X \setminus F_1 \rangle$ is an open set in $\exp_{If} X$ and $F_0 \in \mathcal{W}$. Since $\exp_{If} X$ is a regular space, then there exists a locally finite family $\{U_s : s \in S\}$ of open subsets of X such that $F_0 \in \langle U_s : s \in S \rangle$ and $[(U_s, s \in S)]_{If} \subset \mathcal{W}$. Therefore $F_0 \in U = \bigcup \{U_s, s \in S\}$, U is an open set in X

and $F_0 \subset U \subset X \setminus F_1$. If $[U]_X \cap F_1 = \emptyset$ i.e. $[U]_X \subset X \setminus F_1$, then X is a normal space.

Suppose that $[U]_X \cap F_1 \neq \emptyset$. Since $\{U_s : s \in S\}$ is a locally finite family, then $[\cup \{U_s : s \in S\}]_X = \cup \{[U_s]_X : s \in S\}$ and we have:

$$\cup \{([U_s] \cap F_1), s \in S\} = (\cup \{U_s : s \in S\}) \cap F_1 = [\cup \{U_s : s \in S\}]_X \cap F_1 \neq \emptyset.$$

There exists an index $t \in S$ such that $[U_t]_X \cap F_1 \neq \emptyset$. For every $s \in S$, let $x_s \in [U_s]_X$, $s \neq t$, and $x_t \in [U_t]_X \cap F_1$. The set $F = \{x_s : s \in S\}$ is a closed subset of X. Every neighbourhood of $F \in \exp_{lf} X$ contains some point of $\langle U_s : s \in S \rangle$ and so $F \in [\langle U_s : s \in S \rangle]_{lf} \subset \mathcal{W} = \langle X \setminus F_1 \rangle$. This contradicts the fact that $F \cap F_1 \neq \emptyset$. Thus (d) \Longrightarrow (a).

In [5] J. Keesling (see also N. Veličko [12]) has proved the following statement.

Theorem 2.3. The hyperspace $\exp_f X$ is a normal space if and only if X is a compact space.

There exists a noncompact space X such that $\exp_{lf} X$ is a normal space. For example, the space $X = D(\aleph_0)$ ($D(\aleph_0)$ the discrete space of power \aleph_0), is a noncompact space, and $\exp_{lf} D(\aleph_0)$ is a normal space (the discrete space of power 2^{\aleph_0}).

The following statement is valid.

THEOREM 2.4. The following conditions are equivalent:

(a) $\exp_{lf} X$ is Lindelöf.

(b) X is compact (exp_{lf} X is compact).

PROOF. The identity mapping $Id: \exp_{If} X \longrightarrow \exp_{f} X$ is a continuous mapping. If $\exp_{If} X$ is a Lindelöf space, $\exp_{f} X$ is also Lindelöf and hence a normal space. By Theorem 2.3. X is a compact space.

A space X is said to be weakly Lindelöf if every open covering $\{U_s : s \in S\}$ of X, has a countable subcovering $\{U_{s_i} : i \in N\}$ such that $\cup \{U_{s_i} : i \in N\}$ is a dense set in X (see [3]).

Lemma 2.5. Let X be a weakly Lindelöf space. Then every locally finite family of open sets in X is countable (see [3] p. 456).

Lemma 2.5. implies

LEMMA 2.6. Let X be a feebly Lindelöf space. Then

(a) $\tau_{lf} = \tau_{clf}$,

(b) every $\langle \mathcal{U} \rangle \in \tau_{lf}$ is a G_{δ} -set in $\exp_f X$.

3. Real-compactness

Let X be a completely regular space, cX a compactification of X and $c: X \longrightarrow cX$ be a homeomorphic embedding of X into cX such that $[c(X)]_{cX} = cX$. In this section we shall identify the space X with the subspace $c(X) \subset cX$ of a compactification cX of X. The Stone-Čech compactification of X is denoted by βX .

In this section we will assume that X is normal so that $\exp_f X$, $\exp_{lf} X$ and $\exp_{clf} X$ are completely regular spaces. Hence, these three spaces have T_2 compactifications. The following statement was proved in [6].

LEMMA 3.1. Let X be a normal space. Then $\exp \beta X$ is a compactification of the space $\exp_{f} X$.

The mapping $j: \exp_f X \longrightarrow \exp \beta X$ defined by $j(F) = [F]_{\beta X} \ \forall F \in \exp_f X$ is

a homeomorphic embedding.

A characterization of real-compactness is the following (see [1] p. 243.)

LEMMA 3.2. A completely regular space Y is real-compact if and only if there exists a compactification bY of Y, such that for every point $y_0 \in bY \setminus Y$ there exists a G_δ set G in bY such that $x_0 \in G \subset bY \setminus Y$.

For $\exp_f X$, Popov showed in [11] that if X is a Lindelöf space then the compactification $\exp \beta X$ of $\exp_f X$ satisfies the conditions of Lemma 3.2. Using this, Popov showed the following theorem:

Theorem 3.3. Let X be a Lindelöf space. Then the space $\exp_f X$ is real-compact.

The following result is valid:

Lemma 3.4. If $\exp_f X$ is a real-compact space, then $\exp_{elf} X$ is also a real-compact space.

PROOF. Let $\exp_f X$ be a real-compact space and let $b \exp_f X$ denote a compactification which satisfies the condition of Lemma 3.2. The mapping $j: \exp_{clf} X \longrightarrow \exp_f X \subset b \exp_f X$ given by: $\forall F \in \exp_{clf} X, \ j(F) = b(Id(F)) = b(F) \in b(\exp_f X) \subset b \exp_f X$ is a continuous one to one mapping. Then there exists a compactification $c \exp_{clf} X$ and an extension, $\tilde{\jmath}: c \exp_{clf} X \longrightarrow b \exp_f X$ of j (see [1] p. 334).

We are going to show that $c \exp_{clf} X$ also satisfies the condition of Lemma 3.2.

Let $T \in c \exp_{clf} X \setminus \exp_{clf} X$ and $\tilde{\jmath}(T) = \tilde{T} \in b \exp_f X$.

(i) $\tilde{\jmath}(T) = \tilde{T} \in b \exp_f X \setminus \exp_f X$. Then there exists a G_δ -set $\mathcal{G} \subset b \exp_f X$ such that $\tilde{T} \in \mathcal{G} \subset b \exp_f X \setminus \exp_f X$. Then we have that $\tilde{\jmath}^{-1}(\mathcal{G})$ is a G_δ -set, and

$$T \in \tilde{\jmath}^{-1}(\mathcal{G}) \subset c \exp_{clf} X \setminus \exp_{clf} X.$$

(ii) $\tilde{\jmath}(T) = F_f \in \exp_f X$. Let $F_f = j(F_c)$, $F_c \in \exp_{clf} X$ ($F_f = F_c$ as elements of $\exp X$).

Let $\mathcal{U}(T)$ and $\mathcal{U}(F_c)$ be disjoint neighbourhoods of the points T and F_c in $c\exp_{clf}X$ and

$$\mathcal{U}(F_c) \cap \exp_{clf} X = \left\{ \begin{array}{ll} \langle U_1, U_2, ..., U_k \rangle, & \text{if } F_c \text{ is countably compact }, \\ \langle O_n : n \in N \rangle, & \text{if } F_c \text{ is not countably compact.} \end{array} \right.$$

Let now $\mathcal{V}(F_f)$ be a G_δ -set in $b\exp_f X$ such that $j(F_c)=F_f\in\mathcal{V}(F_f)$ and

$$\mathcal{V}(F_f) \cap \exp_f X = \left\{ \begin{array}{ll} \langle U_1, U_2, ..., U_k \rangle, & \text{if } F_f \text{ is countably compact,} \\ \langle O_n: n \in N \rangle, & \text{if } F_f \text{ is not countably compact,} \end{array} \right.$$

 $(\langle U_1,...,U_k\rangle = j(\langle U_1,...,U_k\rangle, \langle O_n: n \in N\rangle = j(\langle O_n: n \in N\rangle)).$ Suppose that for every G_δ - set \mathcal{G} , $T \in \mathcal{G} \subset \mathcal{U}(F_f)$, $\mathcal{G} \cap \exp_{clf} X \neq \emptyset$ holds. Then $\tilde{\jmath}(\mathcal{G}) \not\subset \mathcal{V}(F_f)$, which contradicts the fact that $\tilde{\jmath}$ is a continuous mapping. Hence, there exists a G_{δ} - set \mathcal{G}_0 such that $T \in \mathcal{G}_0 \subset c \exp_{clf} X \setminus \exp_{clf} X$, or $\tilde{\jmath}(T) \in b \exp_f X \setminus \exp_f X$.

The following statement (which can be also proved directly) is a consequence

of Theorem 3.3. and Lemma 3.4.

Theorem 3.5. If X is a Lindelöf space, then the space $\exp_{lf} X$ is a real-compact space.

There exists a space X which is not Lindelöf and $\exp_{lf} X$ is a real - compact space. Let $m > \aleph_0$ be a non-measurable cardinal number (for example m = c). Then the space D(m) is not Lindelöf, and the space $\exp_{lf} D(m) = D(2^m)$ is real -compact.

REFERENCES

- [1] A. V. ARKHANGEL'SKII, V. I. PONOMAREV, Osnovy obshchei topologii v zadachah i uprazhneniyah, NAUKA, Moskva, 1974.
- [2] G. A. Beer, C. J. Himmelberg, K. Prikry and F. van Vleck, The locally finite topology on 2^X , Proc. Amer. Math. Soc. 101(1987), 163-172.
- [3] R. Engelking, Obshchaya Topologiya, MIR, Moskva, 1986.
- [4] V. V. FEDORCHUK, V. V. FILIPOV, Obshchaya Topologiya; osnovnye konstrukcii, M. MGU, Moskva, 1988.
- [5] J. KEESLING, On the equivalence of normality and compactness in hyperspaces, Pacific J. of Math. 33(1970), 657-667.
- [6] J. KEESLING, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24(1970), 760-766.
- [7] G. DI MAIO AND S. A. NAIMPALLY, The locally finite hypertopology and generalized uniformities, Zbornik Rad. Fil. Fak. (Niš) Ser. Mat. 5(1991), 109-112.
- [8] M. MARJANOVIĆ, Topologies on collections of closed subsets, Publ. Inst. Math. (Beograd) 20(1966), 125-130.
- [9] E. MICHAEL, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71(1951), 152-182.
- [10] S. A. NAIMPALLY AND P. L. SHARMA, Fine uniformity and the locally finite hyperspace topology, Proc. Amer. Math. Soc. 103(1988), 641-646.
- [11] V. V. Popov, O nekotoryh svojstvah eksponenty v topologii Vietorisa, Top. Struktury i ih Otobrazh. LGU (Riga) (1987), 96-101.
- [12] N. V. Velichko, O prostransve zamknutyh mnozhestv, Sib. Mat. Zh. 16 (1975), 627-629.

Katedra za matematiku Mašinski fakultet Niš Yugoslavia