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ABSTRACT. In this paper we further investigate the resulis given in [9] and
[10]. A space X is HCC (hypercouniably compact) if every o-compact set in X has
the compact closure in X (see [10]). A space X is SCC(strongly countably compact
if every countable subsel in X has the compact closure in X (see [6]). A pair (Y, c
s called a SCC(HCC) extension of the space X if Y is a SCC(HCC) space and
¢c: X — Y is a homeomorphic embeding of X in Y such that cly(¢(X)) =Y.
In section 2 we consider SCC and HCC eztensions of locally compact spaces. In
section 3 we also consider continuous images of HCC spaces.

1. Introduction

The closure of A, a subset of a space X, is denoted by clx(A). In this paper
we assume that all spaces are Hausdorfl (7}-spaces). For notation and definitions
not given here see [5,6,7].

Let X be a topological Ty-space. Then:

1) K(X) denotes the set of all non-empty compact subspaces of X.

EQ; F Xg ={F C X : F is finite} C K(X).

DeriniTION 1.1. A space X is strongly countably compact (SCC) if the closure
of every countable subset in X is compact in X (see [6]).

DEFINITION 1.2, A space X is hypercountably compact (HCC) if the closure
of the union of every countable family of compact sets in X is a compact set in X
(see [10]).

DEFINITION 1.3. Let X be a topological T3 - space.
(1) A point p € X is a said to be a P-point provided that intersection of countably
many neighbourhoods of p is a neighbourhood of p (see[7]).
2) A point p € X is a weak P-point if p ¢ ¢lx (F) for any countable FF C X — {p}
see [7]).

It is easy to see that every P-point is a weak P-point. The converse is not
necessarly true (see [10] example 2.1, [7]).

ProrosiTioN 1.4. Let X be a locally compact T-space and let wX dencte the
one-point compactification of X. Then:
(1) The space X is a SCC space if and only if the point zop = wX — X is o weak
P-poini. -
(2) The space X is a HCC space if and only if the point 2o = wX — X is a P-point.

Proor. (1): Suppose that X is an SCC space and let A C X = wX — {zo} be
a countable set. Then el,x(A4) = elx(A4) is a compact set in X and zp & cl,x(4).
Hence point zg is a weak P-point in wX.

Conversely, suppose that zg is a weak P-point in wX. Let A C X = wX —{z¢}
be a countable set. Then zo & cl,x(A); hence ¢l x (A) = clx(A). Since clyx(4) is
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compact subspace in wX, ¢lx(A) is a compact subspace in X = wX —{xg}. Hence,
subspace X = wX — {zg} is an SCC space.

(2): Suppose that X is HCC space and let {U,(2zq) : » € N} be any countable
family of open neighbourhoods of the point g in wX. Then N{U,(zg) :n€ N} =
U{wX — Up(zo) : n € N} and wX — Up(zo) C X is a compact subspace for each
n € N. Since X is an HCC space there exists a compact set K C X such that
wX —Ua(zg) C K for each n € N. The set U = wX — K is an open neighbourhood
of £g in wX. Therefore, wX — K C N{Ux(zo) : n € N}. Hence, zg is a P-point in
X.

Conversely, suppose that @ is a P-point in wX and let {K,, : n € N} be a
countable family of compact sets in X. Then U{K, : n € N} = nfwX — K, :
n € N} and wX — K, 18 an open neighbourhood of z¢ in wX for aech n € N.
Since @p is a P-point in w X, there exists an open neighbourhood U of zy such that
UcCcn{wX — K, :n& N}. Therefore, K, CwX — U for each n € N and wX — U
is a compact subset of X. Hence, by Definition 1.2, X is an HCC space. This
completes the proof.

CororLLary 1.5. Let be a Tychonoff space for which X — X = {x¢}, (i.c.
wX = X ). The space X is HCC(SCC) if and only if the point zy is a P-point
(weak P-point).

DEFINITION 1.6. A pair (Y,c¢), is called a SCC(HCQC) extension of a space X,

if Y is a SCC(HCCQ) space and ¢ : X — Y is a homeomorphic embedding of X in
Y such that ely (¢(X)) =Y.

If a space X is embeddable in a SCC(HCC) space Y, i.e., if there exists a
homeomorphism f : X — M onto a subspace M = f(X) of Y, then obviously
the pair (ely ((fX)),io f?, where ¢ denotes the embedding of M in cly (M), is a

SCC(HCCQC) extension of the space X. Hence every space which is embeddable in a
SCC(HCC) space has a SCC(HCC) extension.

2. SCC and HCC extensions of locally compact spaces

ProrosiTioN 2.1. Let X be a locally compact and pseudocompact space which
is not ¢ SCC space. Then X can be embedded as an open subspace inio an SCC
space X .

ProoF. Let 7 be the topology of X and let X = {A : A C X, card(4) = Ry
and elx(A) ¢ K(X)}. Since X is not a SCC space, X # (). Let p be the equivalence
relation on A’ defined by ApB <> clx(A) = elx(B) (A€ X, Be &). X = U{C; : C;
is an equivalence class of p, i € D}, X' /p = {C; : i € D}, where D is an index set
for X /p. One can note that for every C;, 1 € [J, there exists a noncompact closed
subspace X; C X, 1 € D with the property that for every A € C;, clx(4) = X,
i€D. Let X*={X;:i€ D} and X' = X UX* . Obviosly X N X* = 0. We now
introduce a topology 7’ on X’ as follows: v/ = rU{{X;}U(X;—K) : K € K(X;),7 €
D} where 7 is the topology on X and {{X;}U(X; — K) : K € K(X),: € D} are
basic neighborhoods of point X; € X* intersecting X. Let ¢X = X' U {p} where
p & X' and o is an topology on ¢X defined as follows:

c=rU{{p}U(X*—F): FeKk(X")}
The space (¢.X, o) has the following properties:

The subspace X is open in ¢ X and ¢l (X) = X',
Since X 13 locally compact this is obvious f{'(om the way we constructed topology .

The subspace 0. X — X is closed and compact in o.X.
This is clear, because subspace ¢ X — X is the one-point compactification of X*.
The point p € ¢X 1s an isolated point of X .
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This is clear, because ({p} U X*)N X = ().

The space (¢X,a) is SCC but it is not compact.

Let A ={a, € X : n € N} be any countable subset of X C ¢X andlet A € .
Then there exists an X;, € X* such that elx(A) = X;,. The set X;, U{X;,} 1s
compact in X and clox(4) = X;, U {X;,}. Suppose that A C ¢X — X. Then
elox—x(A) = elox(A) € K(eX)(0X — X is closed and compact in ¢X). Hence 0 X
is a. SCC space. Since X is an open subspace in ¢X and it is not compact there
exists an open infinite cover V C 7 without a finite subcover. Then VU ({p} U X™*)
is an open cover of ¢.X without a finite subcover. Hence (¢X, o) is not compact.

Letzy € Xandzs € X, 21 # 22, X C 00X = XUX*U{p}. Since X is Hausdorfl
and X is open in oX, any two distinct points in X have digjoint neighborhoods in
oX.

Let z;: € X and 9 € X*, 16, @y = X;, € X*. Since X 1is locally compact,
there exists an open neighborhood G of z; in X such that elx (G) € K£(X). The set
ci(G)ﬂXiD [ I'C()i’@u) C )\:(X) Let i =Gand Uy = {XﬁD}U()’('iOf(C!X (G)ﬂXiD)).
Then [/; and Uy are disjoint neighborhoods of 27 and z5 1n ¢X.

Let z; € X and z5 = p; then there exists an open neighborhood G of z; In
X such that clx (G) € K(X) (X is locally compact). The sets G and {p} U X™* are
disjoint neighborhoods of zy and p in ¢ X.

Let 23 = X;, € X* and 22 = p; then {X;, } UX;, and {p} U (X* — {X;,}) are
disjoint neighborhoods of X;, and p in ¢X.

Let £; = X;, and z3 = X;, be distinct points in X*; then V; = {X;,} U X},
andng = {X;,} U X;, are neighborhoods of z; and z3 in ¢X such that z; ¢ V4 and
D) Ifl

REMARKS. (a) Let S(X) = {A: A C X, A is a closed separable set}. If
(AN B) € K(X), for any two A and B in §(X), then ¢X is a Hausdorff space.

(b) Let card(X*) < ®y. Then ¢ X = X' and 0 =7, e, (¢X,0) = (X', 7,). It
is easy to see that clox (X) = o X.

(c) Let familly X = {4 : A C X, card(4) = Ro and clx(4) ¢ K(X)} be
totaly-ordered by inclusion. If there exists a maximal element M € &, then o X =
rU{elx (M)YU(elx(M)—RK) : K € K(elx(M))}. The space 0.X is Hausdorff and
Cl.rg}((X =T,

For example, the deleted Tychonoff plenk X = [0,w;] % [0,ws] — {(w1,wo)} is
a pseudocompact and locally compact space which is not SCC. The subset A C
where A = {(w1,n) : 0 < n < R} is a maximal element for X and clx(A) = A.
Hence o X = X U{A}land e = TU{{A}U(A-K): K € K(A)}.

(d) Since X is locally compact and Hausdorff 1t is Tychonoff. Therefore, there
exist compactifications wX (wX = X U{zo};20 & X) and gX. Let y € X — X.
Ifyisa we{ak} P-point, then the subspace SX — {y} is a SCC space (see [10], 3.3),
Le., BX — {y}.

(e) By 1.4, the one-point compactification wX is an SCC extension of X.

ProrosiTiON 2.2. Let X be a locally compact and SCC space which is not a
HCC space. Then X can be imbedded as an open subspace of HCC space pX.

Proor. Let 7 be the topology on X and let X = {A : A C X, A is 0 —compact
and cl4(X) ¢ K(X)}. Since X is not a HCC space, X # 0. Let p be the equivalence
relatiom on X defined by ApB < elx(A) =elx(B) (A€ X,Be X). X =U{(; :
is an equivalence class of p,i € D}, X /p = {A; : i € D} where D is an index set
for X/p. One can note that for every C;,i € D there exists a noncompact closed
subspace X; C X,i € D with the property that for evert A € C; clx(A) = Xi,
i€D. Let X* ={X;:i€ D} and X' = X UX*. Obviosly, X N X* = 0. We
introduce a topology 7 on X' as follows:

r=rU{{X;}U(X; - K): K € K(X;);i €D}




250 D. Milovanéevié

where 7 is a topology of X and {{X;} U(X; — K) : K € K(X;);i € D} are basic
neighborhoods of points X; € X* intersecting X. Let X = X' U {p} where p ¢ X'
and ¢ a topology on X defined as follows:

o= U{{p}U(X* = F): F € |CalK(X*)}

The space (¢X,¢) has the following properties:

The subspace X is open in ¢X and elx/(X) = X'.

The subspace pX — X is closed and compact in pX.

The point p € X is an isolated point for X.

The space (X, ¢) is HCC but it is not compact.

Let A be any o-compact subset of X C ¢ X (X = XUX*U{p})andlet A € X.
Then there exists an X;, € X* such that clx(A) = X;,. The set X;, U {X;,} is
compact in X and cyx = X;, U {X;,}. Suppose that A C X — X. Then
elox_x(A) = el,x(A) € K(pX) (pX — X is closed and compact in ¢X). Hence
pX i1s a HCC space. Since the subspace X C ¢X is open in X and it is not
compact, there exists an open infinite cover V without a finite subcover. Then
VU ({p}UX*) is an open cover of pX without a finite subcover. Hence (pX, ¢) is
not compact.

Let z1 and z, be any two distinct points in X. If ;1 € X, 29 € X; &) €
X, 20 € X" 21 € X, 20 = p; 21 € X*, 3 = p; then there exist disjoint neighbor-
hoods of ; and z» in X ( see proof of 2.1 ). Let z; = X;, and 2, = X;, be distinct
points in X*. Then U; = X;, U{X;,} and Uy = X;, U {X;,} are neighborhoods of
zq and z9 such that z1 ¢ Uy and z9 ¢ U3.

REMARKS (a) Let R(X) ={A: AC X; A is a closure of a o-compact set}. If
(AN B) € K(X), for any two A, B in R(X), then ©X is a Hausdorff space.

(b) Let card(X™*) < Ro. Then ¢ X = X' and ¢ = 7/, Le., (X, ) = (X', 7). It
is easy to see that cl,x(X) = pX.

(c) The familly X = {4 : A C X, A is a o-compact and eclx(4) ¢ K£(X)}
is totaly ordered by inclusion. If there exist a maximal element M € X, then
X = X U{elx (M)} and ¢ = 17U {{clx (M) U (clx (M) — K) : K € K(clx(M))}.
The space ¢X is Hausdorft and el,x (X) = ¢.X.

(d) Since X is locally compact and HausdorfT it is Tychonoff. Therefore, there
exist compactifications wX (wX = X U {p},p ¢ X)and fX. Let p€ X — X. If
p is a P-point, then the subspace X — {p} is an HCC space(see [10], 3.3), i.e,,
BX — {p} = X and ¢ is topology of X — {p} induced by 2X.

(e) By proposition 1.4, the one-point compactification wX is HCC extension of

(f) Let X be alocally compact and SCC space which is not a HCC space. Then
by 2.2, X can be imbedded as an open subspace of an HCC space ¢X. The space
X U {y}, where y is an isolated point in X, is an SCC space. Then the function
f X — X U{y} defined as

z, z€X
y, z€pX -—X

)= {

is a continuous function from X to the SCC space X U{y}. If y € X, then [ is
continuous function from X onto X.
3. Continuous images of HCC spaces

It can be shown that every continuous image of an HCC space is an SCC space.
The HCC property is not a continuous invariant(see [10] example 2.4).
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DErINTTION 3.1. A space X is a Cy-space if there exists an HCC space ¥ and
continuous mapping f: Y — X from Y onto X.

It is clear that every Cy-space is an SCC space. By remark (f) in 2.2, the
converse is not necessarily true.

ProprosITION 3.2. Every closed subspace of a Cy-space is a Cy-space.

Proor. Let Y be a closed subspace of C'g-space X. By 3.1, there exists an
HCC space W and a continuous mapping f : W — X from W onto X. The set
F7I(Y) is closed in W. By 2.5 in [10], f~Y(Y) is an HCC space. Hence ¥ is a
C'gr-space. This completes the proof.

‘PROPOSITION 3.3. A continuous image of a Cg-space is a Cp-space.

ProoF. Let X be a Cgy-space and f : X — Y a continuous mapping. Let
g : W — X be a continuous mapping from an HCC space W onto X. Then, since
g is continuous, g o f is a continuous mapping from HCC space W onto Y. Hence,
Y is a Cg-space. This completes the proof.

CoOROLLARY 3.4. Every quotient space of a Cg-space is a Cg-space.

ProrosiTioN 3.5. The disjoint {topological sum of a finite family of Cg-space
15 a Cyr-space.

ProoF. Let X be the disjoint sum of the family {X; : i€ A card(A) < N}, of
C'gr-spaces. Then for each ¢ € A we have an HCC space Y; and a cotinuous surjection
fi 1 Yi — X;. Let Y be the disjoint sum of the family {Vi:1€ Acard(A) < No}.
Then, by proposition 2.6, in [10] Y is an HCC space. The mapping f : ¥V — X
defined as J(Y) = fi(Y); Y= Y;, 1 € A, is a continuous surjection. Hence, X is a
Crr-space. This completes the proof.

ProrosiTioN 3.6. Let {X, :a € A} be a family of non-empty spaces. Then
the product space X = [[{Xs :a € A} is a Cg-space if and only if X, is a Cr-space
for each a € A.

Proor. Let X be the product of spaces X, ,a € A. If X is Cy-space, then
every X, ,a € A, is a Cy-space. This is a direct consequence of Proposition 3.3.

Conversely, suppose that every X, ,a € A, is a Cg-space. Then for each
a € A we have HCC space Y, and a continnous mapping f, from Y, onto X,. The
product space ¥ = [[{Ys : @ € A} is an HCC space (see 2.8, in [10]). The mapping

: Y — X defined by formula Vy € Y(y = {ya : a € A} = f(y) = {fa(va) 12 €
} =z € X) is a continuous mapping from Y onto X. Hence, X is a (y-space.
This completes the proof.
The following is an immediate consequence of Propositions 3.2 and 3.6.
CoOROLLARY 3.7. The limit of an inverse system of Cp-spaces is a Cy-space.

ProrosIiTION 3.8. Let X be a first countable Cp-space. Then X 1s a HCC
space.

ProoF. This is a direct consequence of Theorem 2.3 in [10] and remark 3.1.
PROPOSITION 3.9. Let X be a separable Cy-space. Then X is a compact space.
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