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ABSTRACT. We prove thal for every Lindelof space X the pseudoweight of
X is equal to the splittable pseudoweight of X. We also prove some other resulls
tnvolving the splitlable pseudoweight. The divisibility degree of a topological space is
defined and studied. Some cardinal inequalities involving the divisibility degree are
proved. Il is proved that every compact divisible space is meirizable.

0. Introduction

Let P be a class of topological spaces. A topological space X is said to be
splittable over P if for every A C X there exist a space Y € P and a continuous
mapping f : X — Y such that f(X) =Y and f=1f(A) = A (see [2] and also [5],
[18]). When X is splittable over the familly of all subsets of the space R we say
simply that X is splittable. If ¢ is a topological cardinal function we define the
splittable version ¢, of ¢ by

¢s(X) = min{r : X is splittable over the class of all spaces Y with (V) < 7},

where X is a topological space. For some results involving different splittable ver-
sions of cardinal functions we refer to [4], [6], [7], [8], [14], [15], [16].

Here we prove that for every Lindelof space X we have pw,;(X) = pw(X),
where pw(X) denotes the psendoweight of X. We also prove some other results
involving the splittable pseudoweight. In the second part of the paper we define
and study the divisibility degree of a space and prove some cardinal inequalities
using this cardinal function. In particular, it is proved that a compact is metrizable
if and only if it is divisible.

We use the usual topological terminclogy and notation following [10]; for defi-
nitions and results on cardinal functions we refer to [1], [12] and [13]. w, pw, L, wL,
5, €, ¢ , t denote the weight, pseudoweight, Lindelof number, weak Lindelsf num-
ber, spread, extent, pseudocharacter and tightness, respectively. ¢L(X) denotes the
smallest cardinal 7 such that for any closed A C X and any family I/ of open subsets
of X for which A C Ul{ there is a subfamily V of & with |V| < 7 and A C UV (see,
for example, [7], [18]). The cl-cardinality of a space X, denoted by clard(X), is
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the smallest cardinal = such that every subset of X is a union of < 7 many closed
subsets of X (sce [9]).

All spaces in this paper are T}, all mappings are continuous and all cardinals
are infinite.

We shall need the following known lemma:

LEMMA. If S is a set of cardinality < 27, then there exisis a point separaiing
family v of subsels of S having cardinalily <r. H

[Recall that v is point separating if for any p,q € 5, p # ¢, there issome 4 € v
such that p€ A, g & A\

1. The pseudoweight and splittability

THEOREM 1.1. For every Ti-space X we have pw,(X) < pw(X) <
L(X)pws(X). In particular, for every Lindelof space X, pw,(X) = pw(X).

ProoF. Put L(X)pw,(X) = 7. Let A be a subset of X. Choose a space ¥
with pw(Y) < 7 and a continuous mapping f : X — ¥ such that ¥ = f(X) and
A = f71f(A). We have [1]: |Y| < 2?*(¥) < 27 and thus |f(4)] < 27. Hence,
e(A) = e(U{f (y) iy e f(A)}) <27 -7=27. As A was an arbitrary subset of X
we have he(XX) = s(X) < 27. Since X is a Ti-space, by the well known theorem of
Hajnal-Juhasz [1], [12], [13] we obtain | X| < 28(X)¥(X) < 227, According to Lemma
there exists a point separating family S of subsets of X having cardinality < 27; let
S§={8y:a¢€2T}

For every a € 27 fix a mapping fs : X — Y, from X onto a space Y, with
pw(Ys) € 7 such that f71f.(Sa) = Sa. Let By be a pseudobase for Y, having
cardinality < 7. We are going to prove that the following holds:

for every z € S, and every y & S, there is I, € B, such that

() e € fi'(Ve) and y € 71 (Vo).
Indeed, fa(y) & Sa so that fo(z) # fa(y). Therefore, there exists a member ¥ in
B. such that fo(z) € Vi and fo(y) & Vo. This 1, satisfies (%).

Put now B = U{f " (Bs) : @ € 27}, C = {X\B: B € B}. By (¥) Cis a
point separating collection of closed subsets of X and |C| < 27. Therefore, I =
{X\C : C € C} is a pseudobase for X such that |[i/| = || € 27 which means
that pw(X) < 27. X is a Ti-space so that we have (see [1], [12], [13]): |X]| <
pw(X)LEWX) < (27)7T = 27 (note that (X)) < 7 because X is splittable over
a class of spaces ¥ with (Y) < pw(Y) < 7). Applying once again Lemma one
can find a point separating family {7y : « € 7} of subsets of X of cardinality < 7.
Repeating the proof of the previous part of the theorem we get a pseudobase I*
for X of cardinality < 7. So, pw(X) < 7 = L(X)pw, (X).

If X is a Lindelof space, then pw(X) < pw;(X). On the other hand, the
inequality pw,(X) < pw(X) is always true and we have pw,(X) = pw(X). H

Every compact (= compact Hausdorff space) with a.countable pseudobase has
a countable base [1], [12], so that by the previous theorem we get the following
result.
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Cororrany 1.2, If a compact X is splittable over the class of all spaces of
countable pscudoweight, then X is metrizalile., B

I'rom the proof of Theorem 1.1 we obtain:

CoroLuary 1.3.  For every Ty-space X , |X| < 2E(Xpwe(X)

We shall now prove some other relations between pw and puw;.

THEOREM 1.4. (i) For every Ti-space X, puw(X) < 2¢(Xpws(X).

(i) For every Ty-space X, pw(X) < 2¢E(X)pw.(X),

(3i)  For every normal space X, pw(X) < 2wE(X)pw.(X),

Proor. (i) Let ¢(X)pw,(X) = 7. Choose a space Y with pw(Y) < 7 and
a mapping f : X — Y such that f~1f() = A. From |f(4)] < Y| < 27¢0) < 27 it
follows that A is the union of < 27 closed subsets of X : A = U{f~Y(y) : y € f(A)}.
For every y € f(A), e(f~'(y)) < e(X) < 7,50 that e(l) € 27 . 7 = 27. This means
that he(X) < 27. Bul he(z) = s(X) [12]. On the other hand, ¥(X) < 7. Since X
is a Ty-space we have | X| < QX IULX) 2 22" It remains now to work as in the first
part of the proof of Theorem 1.1 which will give pw(X) < 27,

(i) Let cL(X)pws(X) = 7. As in the proof of (i) we get heL(X) < 27. We
shall check that the inequality s(X) < heL(X) holds (for every HausdorlT space X).
Let A be a discrele subset of X. Then for every z € A choose a neiglibourhood U/,
of z such that U; N A = {x). The family {U, : 2 € A} is an open cover of A and
since heL(X) < 27 there is a subfamily {U,, : 2. € A, @ € 27} of {U, : & € A)
such that A C U{U,, : @ € 27}. For every o € 27 we have ANT, = {za} and
so |[A] £ 27, ie. s(X) < 27. Since X is a Ty-space and 1(X) < 7 we again have
X| £ 2%. Now the previous proof should be repeated.

(iii) The proof is almost the same as in (i) and (i) if we take into account
2.35 in [13] and hwL(X) = s(X) [12]. &

2. Another aproach to splitéability: divisibility

Let X be a topological space and A a subset of X. Tollowing [3] we say that
a lamily S of closed subsets of X is a separator for A if for each 2 € A and eacl
y € X\A there exisls S € S such that 2 € Sand y ¢ S. In [3], Arhangel’skii defined
a space X to be divisible if for every A C X there is a countable separator for A,
and to be strictly divisible if for every A C X there is a countable separator for A
consisting of (closed) Gs-sets. Ile also proved that every Lindeldf strictly divisible
space has a Gs-diagonal.

Clearly, every splittable space is (strictly) divisible. The following result shows
that splittability and divisibility are closely connected.

TneorEM 2.1. A perfectly normal space X is divisible if and only if il is
splitiable.

Proor. Let X be divisible and let A be a subset of X. Take a countable
separator {F; : i € w} for A. As X is perfectly normal every F; is a zcro-set:
F; = f71(0), where f; : X — R is a continuous mapping. Denote by f the diagonal
product A{f; :i Ew}: X — R¥. From the definition of a separator it is casily seen
that A = f~!f(A), i.e. X is splittable. W

From this theorem we conclude that not all perfectly normal spaces are divisi-
ble. In fact, we have the following
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ExaMprLE 2.2. There exist metric spaces which are not divisible. Indeed,
Proposition 6.2 in [5] gives an example of a metric locally compact space which is
not splittable (see also Proposition 6.5 in the same paper). B

ExaMpPLE 2.3. (1) Every perfectly normal metacompact scattered space is
divisible (see [5;Prop. 5.6]).
(2) Every scattered metrizable space is divisible ([5;Cor. 5.7]).
(3) A metric space of cardinality < 2 is divisible ([5;Cor. 2.21]).
(4) A left metrie space is divisible ([5;Cor. 5.5]). W

For a space X and a subset A of X we define
dvs(A, X) = min{ 7 : there is a separator S for A having cardinality < 7}

and

dvs(X) =sup{dvs(4): AC X }.

The cardinal number dvs(X) we shall call the divisibility degree of X.

From a remark due to Avhangel’skii [3] we actually have this simple, but useful
result.

ProrosiTion 2.4. For every Ti-space X we have

(1) dvs(X) < pu(X);

(2) clard(X) < 295X, W

In fact, we have the following result.

ProrosiTioN 2.5. For every Ty-space X we have
dus(X) < pw,(X) < pw(X).

ProorF. We shall prove the first inequality because the second one is obvious.
Let pw.(X) = 7. Take a subset 4 of X and a point y € X\ A. Choose a space
Y with pw(Y) < 7 and a mapping f : X — Y = f(X) such that f~' f(4) = A.
Let B be a pseudobase for ¥ witnessing pw(Y) < 7 and let {V, : @ € 7} be a
subfamily of B for which N{V, : o € 7} = {f(y)}. The sets: f7H(Y\Va), @ € 7,
are closed. On the other hand, if z is any member in A, then f(z) ¢ V3 for some
B3 € r because f(y) & f(A). Then z € f~'(Y\Vs), y & 1 (Y\Vs) which means
that {f~}(Y\Va) : @ € 7} is a separator for 4, i.e. dus(X) <7. |

Let us note that the following two obvious propoesitions hold.

ProrosITION 2.6. For every Ti-space we have
P(X) < dvs(X).
ProrosiTioN 2.7. For every space X we have
dvs(X) = dus,(X). H
We are going now to prove some cardinal inequalities involving the divisibility
degree. We start with a theorem which is, according to Proposition 2.5, an im-
provement of Theorem 1.1 and Corollary 1.3 (see [17]). Let us point out that this
theorem should be compared with Theorems 2 and 3 in [3].
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TuroreEM 2.8. For every Ti-space X we have:

(a) !Xl < 2du5(_X)L(X);

(b) pu(X) < dus(X)L(X).

ProoF. (a) Let dvs(X)L(X) = 7 and let A be a subset of X. Since dvs(X) <
7 we have clard(X) < 27 so that the set A can be represented as the union A =
U{As : o € 27} of < 27 closed subsets of X. For each o € 27 we have e(A,) <
L(A,) < L(X) < 7, so that e(4) < L(A) < 27 -7 = 27. This means he(X) =
s(X) < 27. Since X is a Tj-space one has |X| < 2°(X)¥(X) < 227 According to
Lemma it follows the existence of a point separating family F of subsets of X of
cardinality < 27. Tor every F' € F let S be a separator for F' having cardinality
< 7. Then § = U{Sr : F € F} is a point separating collection of closed subsets
of X and its cardinality is < 27. Therefore, B = {X\S : § € §} is a pseudobase
for X such that |[B| < 27, so that pw(X) < 27. As X is a Tj-space we have
1X| < pu(X)EENWR) < (am)77 =127,

(b) Let dvs(X)L(X) = 7. By (a) |X| < 27 so that, by Lemma, there is a
point separating family 4 of subsets of X such that |A| < 7. For every A € A we
take a separator Sy for 4 of cardinality < 7 and put & = U{S4 : A € A}. The
collection & is point separating and has cardinality < 7, so that P = {X\S5 : S € §}
is a pseudobase for X of cardinality < 7, ie. pw(X) < 7. B

REMARK 2.9. In fact, Theorem 2.8 is not a ” proper” improvement of Theorem
1.1 and Corolary 1.3, because we are going to prove the equality

dvs(X)L(X) = L(X)pw, (X).

We have already proved duvs(X) < pw,(X) so that dvs(X)L(X) < L(X)pw,(X).
On the other hand, from pw,(X) < pw(X) < L(X)dvs(X) it follows pw, (X )L(X) <
L(X)dvs(X). H

For compact spaces we get the following nice result.

CoroLLARY 2.10. ([17]) Every divisible compact is metrizable. H

It is known that regular Lindelof spaces are paracompact [10] and that every
paracompact p-space with a (Gs-diagonal is metrizable. From the fact that every
Lindelof strictly divisible space has a Gs-diagonal, we have

CoROLLARY 2.11. Every strictly divisible regular Lindeldf p-space [1] is metriz-
able. W

This corollary is related to the following result: every splittable paracompact
p-space is metrizable [5] (see also [16]).

Since, obviously, a perfect space (= closed sets are Gy) is divisible if and only
if it is strictly divisible, we also have

CoroLLARY 2.11°. Every divisible perfect regular Lindelof p-space is metriz-
able. W

ReEmaRrK 2.12. Corollary 2.10 can be also proved in the following way:

Let A be a subset of X. The set A is the union of < 2“ closed and thus compact
subsets of X. Because X is a Ty-space we can apply the following result from [11]
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(see also [9]): if every subset of a Th-space is a union of < X compact subsets of the
space, then that space has cardinality < A. So, |X| < 2%. It is easy now to find out
a countable pseudobase for X. B

REmARK 2.13. Taking into account Proposition 2.6, we conclude that the part
(a) of Theorem 2.8 is one type of the Arhangel’skii theorem: for every Ty-space X,
|X| < 2HXL(XN(X) | In this connection, it should be remarked the following:

(1) for every splittable space X, dvs(X) < w; but there are splittable spaces
having uncountable tightness.

(2) Corollary 2.10 shows that for any non-metrizable compact ¥ of countable
tightness $#(Y) < dvs(Y) holds. H

REMARK 2.14. In [5], it was proved: every pseudocompact splittable space is
metrizable. After Corollaries 2.10 and 2.11 it is reasonable to ask whether a pseu-
docompact divisible space is metrizable. The answer is “No”. The famous Mrévka’s
space ¥(w,A) [10; 3. 6. I] is a counterexample. Describe this space. A collection
A of subsets of w is called almost disjoint if for any two members A, B € A, the set
AN B is finite. There exists a maximal almost disjoint collection of infinite subsets
of w having cardinality 2“ (see [12]). Take such a collection and topologize the
set w U A as follows: the points of w are isolated; basic neighbourhoods of a point
A € A are of the form {A} U (A \ F) with F is a finite subset of w. In this way
one obtains the space ¥(w,.A). It is known that ¥(w,.A) is a Tychonoff, perfect,
locally compact, pseudocompact (iff A is a maximal almost disjoint family), devel-
opable, non-normal (and so non-metrizable and non-splittable) space. Besides, 4
is a discrete subspace of ¥(w,.A). But this space is divisible (even strictly divisible)
because the family D = {w\ {n}:n € w} U{(A\ F Y U.NU{L,...,n} : n € w},
where f is any one-to-one mapping from .4 onto a space Y of cardinality 2¥ with
a countable base {U, : n € w} (for instance, one can take ¥ = R), is a closed
countable divisor for every subset of U(w,.4). M

In connection with Theorem 1.4 and (b) in Theorem 2.8 we have the following
result (which is, according to Proposition 2.5, an improvement of Theorem 1.4). We
omit the proof of this theorem, because it is quite similar to the proofs in Theorem
1.4 and Theorem 2.8.

THEOREM 2.15. (o) For every Ty-space X, pw(X) < 2¢(X)dvs(X)

(B) For every Ta-space X, pw(X) < 26L(X)dvs(X)

(v) For every normal space X, pw(X) < 2wL(X)dvs(X)
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