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ABSTRACT. The aim of the paper is to present some results concerning the
class of spaces having a small diagonal.

The diagonal A of a set X, also denoted by A(X) when some confusion can oc-
cur, is the set {(x,z):z € X}. A topological space X is said to have x-inaccessible
diagonal, provided that for any set A C X2\ A with |A| = & there exists a neigh-
bourhood U of A for which |4\ U| = x. This class of spaces was first studied in |
[6]. A space with R;-inacessible diagonal is also called a space with small diagonal. |
Various results connected with this special case can be found in [3], [8] and [6]. ‘

A basic question is whether it is true that a compact space with small diagonal
is metrizable. A positive answer was given in [8] under a complicated set theo- ‘
retical assumption and another, using (CH) and the hypothesis that the spaces in
consideration are of countable tightness, or satisfy some other strong restrictions
on cardinal invariants, was given in [5]. Recently Juhasz and Szentmiklossy have
proved that (CH) only is enough to guarantee that a compact space with small
diagonal is metrizable.

In this paper, among other things, we show that a compact monolithic space
with small diagonal is metrizable and that a cleavable space has small diagonal.

Our notation is standard and follows [4]. By x(A, X?) and P(A, X?) we denote
respectively the character and the pseudo character of A in X2. Compact means
compact Hausdorff and all spaces in the sequel assumed to be at least T}. r

A key point in the proof of the various results mentioned at the beginning is to
show that a given compact space with small diagonal has actually a Gs diagonal.
It is interesting, however, to find conditions under which this fact occurs in more
general situations.

THEOREM 1. [f X is a regular space with small diagonal, X? has the Lindeloff
property and Y(A, X?%) <R, then X has a Gy diagonal.

PrOOF. Let {Uq : @ € w1} be a family of open subsets of X? such that (| Uy =

aEw,
A. Because of the normality of X2, we can assume that also | Ua = A. If for
@EWwy
some B € w; we have () Ug = A than we are done. Thus assume the contrary and
aEf
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for any 8 € wy pick a point 25 € (| Uy \ A. The set so obtained has cardinality
acf
®; and converges to A. This is a contradiction and the proof is complete.

CoroLLaRY 1. (CH) Any Lindeloff p-space with small diagonal and weight
Wy is metrizable.

CoroLLARY 2. (CH) Any Lindeloff ) -space with small diagonal and weight
< Ry has a countable network,

CoRoOLLARY 3. IfX is a space with small diagonal then no compact subspace
of X has weight Ny.

Recall that a space X is said to be monolithic provided that nw(A) < |A| for
any A C X.

CoROLLARY 4. FEuvery compact monolithic space with small diagonal is metriz-
able.

Proor: If the space is not separable then we can select a left separated subset
A of it such that |A| = ®;. Since the space is compact and monolithic, it follows
that the subspace A has weight ¥;-in contradiction with Corollary 3. This shows
that the space must be separable and hence metrizable.

In connection with Corollary 1 we mention the following:

QUEsTION 1. Is it true (assuming (CH) or in ZFC') that any paracompact
p-space with small diagonal and weight ¥; is metrizable?

Recall that a space X is said to be cleavable (see [2]) provided that for any
set A C X there exists a continuous map f : X — R¥ such that 4 = f~1(f(A)).
This notion is linked to Cp-theory: a Tychonoff space X is cleavable if and only if
[CP(X)]ND = R*.

It is easy to see that any point of a cleavable space is a (35, but it is not clear
whether every such Tuchonofl space has a GG diagonal. A partial answer in this
direction is in the next theorem:

LEMMA 1. If X is cleavable and A is a subset of X with |A| < 2%¢ then there
ezists a continuous map f : X — R¥° which is one to one on A.

THEOREM 2. Any cleavable space has small diagonal.

ProoF: Let A be a subset of X2\ A with [4] = ®;. Let B = U{{z,v} :
(z,y) € A} and observe that |B| = N;. Select a continuous map f : X — RNe
which is one to one on B. The map g : X? — ®R¥0 defined by (z,y) — (f(z), f(v))
is clearly one to one on A and g(A) N A(RY) = . Because R%° has a G diagonal
there is a neighbourhood U of A(R%°) such that |g(A) \ U| = ®; and consequently
also |4\ g~}(U)| = Ry. This shows that X has small diagonal.

Since the class of spaces with small diagonal is coutably productive, the same
argument as in the proof above actually shows that the following assertion is true:

PropPoOSITION 1. Any space which is cleavable over the class of spaces with
small diagonal has small diagonal.
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Theorem 2 follows from proposition 2 since &% has a G4 diagonal and in fact
the same proof shows that any cleavable space has s-inaccessible diagonal, for any
regular k not exceeding 2%°.

Notice that a space with small diagonal is in general far from being cleavable.
Indeed even a metrizable space can fail to be so (see[2]). In connection with the
question posed above, it is perhaps worthwhile to observe that a cleavable para-
compact p-space is metrizable (see[2]).

Let us mention a result of the same sort as Theorem 2 which provides a sufficient
condition for a space to have small diagonal.

PRrROPOSITION 2. If any subspace of X of densily not exceeding Ny has small
diagonal then X has small diagonal.
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