Zbornik radova Filozofskog fakulteta u Nisu
Serija Matematika 6:2 (1992), 191-210

SYMMORPHIC SPACE GROUPS OF SIMPLE
AND MULTIPLE COLORED ANTISYMMETRY

SLAVIK V. JABLAN AND ALEKSANDR F. PALISTRANT

(Received 8.05.1991)

ABSTRACT. For all nontrivial cases of assigning 1o points of three-dimensi-
onal Euclidean space colored by p colors signs + or -, theoretical background and
survey of complete derivation of junior symmorphic groups of colored simple and
mulliple antisymmetry of different patlerns, is given. )

0. Introduction

Shubnikov teaching of antisymmetry [1] is used as the basis for various new
generalizations of the classical theory of symmetry and their large application in
discrete geometry [2,3,4,5]. The interpretation of antisymmetry as the two-colored
symmetry brought the idea of Belov multi-colored symmetry [6], named in [4,5] the
p-symmetry. As the other generalization of antisymmetry appeared Zamorzaev an-
tisymmetry of diferent patterns (multiple antisymmetry [3], or (2,2,...,.2)-symmetry
where the number 2 is repeated [ times (or shortly (2")-symmetry), extending the
antisymmetry by assigning to the points of a transformed figure not only one, but
several qualitatively different signs + or -.

As the synthesis of the two generalizalions of antisyminetry mentioned, resulted
the notion of colored antisymmetry (the simple, or (p, 2)-symmetry [4,5], as well as
the multiple, or (p,2, ..., 2)-symmetry [5], (]),2’)—Symmctry),

Till this time, together with the two-dimensional groups and their subgroups,
the three-dimensional point, line and layer (p, 2)- and (p, QI)—symmetry groups [4,5],
and also partly the (p, 2)-symmetry space groups Gé‘p (7], are studied. For complet-
ing the scheme of crystallographic (p, 2')-symmetry groups we need only the (p, 2)-
and (p,2')-symmetry space groups G4 and Gi?.

The survey of the complete derivation of symmorphic (p, 2")-symmetry space
groups G;’P for all nontrivial cases of assigning to points of three-dimensional Fu-
clidean space colored by p colors and { signs + or -, 1s the purpose of this work.

1. Basic assumptions of the gencral theory of colored antisymmetry of
different patterns

§1. The colored antisymmetry of different palterns is deflined as follows:

a) to the every point of a figure, comprising the one of p colors (p > 3), the [
signs + or - are assigned;

1991 Mathematics Subject Classification: Primary 20H15.
Supported by Grant 0401A of FNS through Math. Inst. SANU

191




192 S. Jablan, A. Palistrani

b) by the transformation of the colored antisymmetry of the 0- pattern, j-
pattern, (j, k)-pattern,..., or (1,2, ...,I)-pattern is called the isometric transforma-
tion of the “indexed” figure considered, transforming a point with the color i into
the point with the color (i 4 m) (or with color (i +m — p), where m is the fixed
foralli=1,2,..,p); consequently, such a transformation does not change any sign,
changes only jth sign, only jth and kth,..., or all I signs. Altogether they are 2/
patterns of colored antisymmetry, where the transformations of colored antisym-
metry of the O-pattern coincide with the colored symmetries. Therefore, for p > 3
and [ = 0 this definition results in the p-symmetry [4], for p = 0 and | > 2 in the
l-multiple antisymmetry [3], and for p > 3 and I = 1 in (p, 2)-symmetry (the colored
antisymmetry of Neronova-Belov [4]).

It is simply to check, that all the transformations of colored antisymmetry of
different patterns of a given figure consist of the group called the (p, 2')-symmetry
group of this figure.

From the above follows that every transformation of the colored antisymmetry

of a certain pattern ¢ = es, where s is a symmetry transformation, and ¢ is a
permutation of “indexes” from the group P = {(L,2,...,p) X (4, =) x ... x (+, =)} =
), x Célj C(I) = C,p x C}, where Cp and C( ) are, Iespcctlvely, cyclic groups

of order p and order 2, Cz - the group of order 2, dnd % denotes the direct product
of groups.

The (p, 2")-symmetry group G*® is called the group of complete (p, 2")-symme-
try if the group P consisting of l-components of the transformations belaugjm'f to
G"? |, coincides with P. If P; is a nontrivial subgroup of P, the G'"? is called the
group of uncomplete (p, 2')-symmetry [4,5].

The method of derivation of (p, 2')-symmetry groups of a certain category from
already found groups of p-symmetry from the same category is given by the following
theorem:

THEOREM 1. Ewery group of (p,2')-symmetry, not containing (p, 2")-identity
transformations™ ,can be derived from a certain junior group of p-symmelry (p-
generating) using one of the following ways:

a) by extending the p-generating antiidentily transformations of k independent
patlerns (1 < k < I)** Jwhich generale the group C¥ of the order 2% and commute
with the elements of the first; the group obiained is their direct product and is called
the p-senior group of k independent (2% — 1 different) patterns (the group p — S*);

b) by replacing all elements in each coset in ils decomposition according to one
of normal subgroups of index 2™ (which is the section of 2™ — 1 different subgroups
of the index 2 by the corresponding iransformations of the colored antisymmetry of
any from 2™ —1 dependent patterns, among which they are m independent (2™ — 1
different) patierns (group p— M™);

c) by extending the group obtained from it using the method (b) by such a system

* This means, (p, 2')-symmetry transformations keeping points of the figure fixed,
and changing only indexes [4,5].
** The independence of colored symmetry patterns is defined as the independence
of the corresponding antisymmetry patterns [4,5].
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of antiidentities (a), forming together with already ezisting colored anlisymmetry
patterns k + m independent patlerns of colored antisymmetry; the result is the p-
senior group of k independent (2% —1 different) patlerns and junior of m independent
(28+m — 2% different patterns (1 < k,m; 2 < k 4+ m <1 the group p — S¥M™); this
group is the direct product of the group p — M™ with the group of the order 2%,
generated by the antiidentilies mentioned.

ProoF: Let G'P be a group of (p, 2')-symmetry, not containing (p, 2')-identity
transformations. In the most general case such a group consists of symmetry trans-
formations s, p-symmetries se (where ¢ is non-trivial p-identity* ), p-antisymmetries
see’ (where ¢ is the antiidentity transformation of a certain pattern) and antisym-
metry transformations s¢’. Let define the homomorphism of a group G into a
group EM | which is the direct product of I groups of the order 2 generated by
antiidentities of j-pattern (j =1,2,...,) as:

e; ifg=so0rg=se

h(9)={ ,

e if g = see’ or g = s€’.

It is easy to prove that h is a homomorphism with the carnel G, where G is a
siibgroup of G'? consisting of all symmetry and p-symmetry transformations (G =
G'"?GP, where GF is the p-generating group for G'? ). In line with homomorphism
property [8], G'"? /G = EM™| and complete original of each subgroup £y of B is the
subgroup G of G, where G'? /G, = E(”/El, and £ is the multiple antisymmetry
group of k independent patterns.

From its side, the transformation

s; ifg=s5o0rg=se
o) ={

s€; if g = sc or g = see’.

defines the homomorphism A’ of the group G'? into the set G? of I-antisymmetry
transformations, corresponding to the transformations of G ; according to the
property of homomorphism, the set mentioned is the group, and the carnel of ho-
momorphism A’ is the subgroup E = G'? N EM,

If the group G'”* is of the type p— S¥, then h(G'?) = E and G? C G'?,i.e. GP
coincides with G and represents the carnel of the homomorphism h, transforming
G'"? on E, so G"* =GP x E.

When G'P is of the type p — M™, because E = e, h is isomorphism, and,
because it is the section of 2™ — 1 subgroups of the index 2, the symmetry subgroup
S = G"P N G? is of the same index 2™ in G"* and GP.

Finaly, if G'? is of the type p — S¥ M™, then h'(G) = E' = E; x E, where E;
is generated by m independent antiidentities; then Gy = h/~!(E}) is the subgroup
of the index 2* in G'? (because G'? /G| = E'/E; = E) and of the type p-junior of
m independent patterns, making together with & patterns present in E the system

* This means, it is not the identical permutation of indexes 1,2, 3, ..., p (see [4],
page 36.
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of k¥ + m independent patterns. Therefore, according to Chapter II, §2 of the
monograph [3], G'? =G x E. N

Also holds the converse statement: the set G | obtained from a certain junior
p-symmetry group GF by the method a), b), or ¢) of Theorem 1, is the group.

The collection of the groups derived from one p-generating group by all methods
given by Theorem 1 is called the (p, 2')-family. From the theorem and its proof result
the general properties of a (p, 2')-family. For every (p, 2")-family: a) all groups of
the type p— M™ (1 < m < I) are isomorphic to their p-generating group; b) for
every fixed k (1 < k <) all groups of the type p— S*M™ (0 < m < 1 — k) are
mutually isomorphic.

In each transition from ! — 1 to [ signs only nontrivial is the derivation of
groups of the type p — M™. Practically, such groups can be efficiently derived
using the method of Shubnikov-Zamorzaev [1,3]: 7 or more transformations in the
system of generators of the p-generating group are replaced by the corresponding
transformations of colored antisymmetry of different patterns, among which they
are | independent. Among the groups of (p, 2)-symmetry obtained, in each family
we must find the equal ones* ) and exclude the groups containing (p, 2')-identity
transformations.

Using this method, in order to obtain from a p-generating group the groups of
the type p — M™ non containing (p, 2')-identity transformations, we must respect
the following rules:

a) a generating element of p-generating group can be replaced by a colored
antisymmetry transformation iff its corresponding element in original classical-
symmetry group (generating for the p-junior group in question) has been replaced
by antisymmetry transformation in the derivation of junior Shubnikov groups;

b) two generating elements of a p-generating group is possible to replace by
colored antisymmetry transformations of two different patterns, or replace sepa-
rately by colored antisymmetry transformations {ff their corresponding elements of
the generating classical-symmetry group have been replace separately in the deriva-
tion of junior Shubnikov groups;

¢) three generating elements of a p-generating group can be replaced all by
colored antisymmetry transformations of three independent patterns, or in pairs by
colored antisymmetry transformations of different patterns, or separately iff their
corresponding elements of the generating classical-symmetry have been replaced
separately in the derivation of junior Shubnikov groups, etc.

Validity of these principles is evident. In fact, because of the possible de-
composibility of (p,2')-symmetry in p- and 2'-symmetry if the indexes (colors) are
neglected, the results are statements of the theory of I-multiple antisymmetry, giv-
ing the methods of derivation of Zamorzaev groups from the classical, presented in
Chapter 11, §2 of the monograph [3].

* Two groups G and G’ of the same category G'P are equal if there is an
affine transformation of r-dimensional space transforming P-affine (this means, by
permuting indexes from the group P) every class of points, transformed by G onto
the class of points, transformed by G’ [4].
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For p - an even number, in extension from a p-generating group to the group of
the type p— M™ using Shubnikov-Zamorzaev method, they are derived the groups
of complete and uncomplete (p, 2')-symmetry. To find the structure of the derived
group G'P it can be substituted by the combination of groups of p-symmetry and
simple antisymmetry GP, G, ...,G' (G'"? = (G?,G",...,G") (where GP is obtained
from G"* by ignoring changes of signs, and G* are obtained from G by ignoring
the indexes and I —1 sign of transformed “signed” figure and keeping only 7 th sign),
and forming the extended symbol S/(Hq, Hy, ..., H{)/H, where Hy, Hy, ..., H; are,
respectively, the symmetry subgroups of G?, Hq, ..., H;, and H = HyN H,...N H.
If, for some i = 1,2,...,1, H = HoN H;, then G"? is the group of uncomplete (p, 2')-
symmetry. If for all such i holds H # Hy N H;, then G'? is the group of complete
(p, 2")-symmetry [4].

§2. The problem of the derivation of junior (p,2')-symmetry groups G'? di-
rectly from the p-generating groups can be solved very efficiently using their anti-
symmetric characteristics (AC). We are giving the short theoretical background of
the AC-method.

Let all products of the generators of discrete symmetry group (& be formed in
this way, that in each product every generating element appears mostly once. After
that, we divide the set obtained on the subsets of transformations equivalent in the
sense of symmetry (this means, having the same role in the symmetry group G).
The system obtained is called the antisymmetry characteristic of the group G.

If GP is a junior p-symmetry group obtained from a generating group G us-
ing the method [4] (i.e., replacing its generators by the corresponding p-symmetry
transformations), we treat the generators of the group GP in the same way as it is
done with the generators of its generating symmetry group G. The result obtained
is the antisymmetry characteristic of the group GP(AC(GP)).

The transition from G to G? induces the transition from AC(G) to AC(GF),
which will be used as the basis for the derivation of (p, 2')-symmetry groups of the
type p — M™ from G?P .

The structure of the permutation group P = €, x C! depends on the re-
ducibility of the group C, (i.e. from the possibility that C, be decomposed in the
direct product of groups CP', and Cq). If p = 2n — 1 or 4n, such a decomposition
is imposible. If p = 4n — 2, then C4_3 = Ca,_1 x Cy, and consequently, the
(2n — 1, 2)-symmetry is equivalent to (4n — 2,2'~1)-symmetry. It is easy to check
[4,5] that the derivation of the groups of (2n — 1, 2")-symmetry of the type p— M™
from a p-generating group G*"~! is the identical to the derivation of 2'-symmetry
groups of the M™-type from a symmetry group G from which G?"~1 is derived,
and the derivation of (4n — 2,2'~!)-symmetry groups of the type p — M™ from a
p-generating group (G**~2 is identical to the derivation of (2n — 1,2')-symmetry
groups of the type p— M™ from the p — M group GV?7~1 or G, derived from the
same symmetry group.

Since we consider only the case p = 3,4, 6, the number of the groups of (3,2")-
symmetry of the type p — M™ derived from a p-generating group G3, is equal to
the number of the groups of 2'-symmetry (i.e. [-multiple antisymmetry) of the
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M™-type derived from the same generating symmetry group, and the number of
(6,2'~1)-symmetry groups of the type p— M™ derived from the p-generating group
GS is equal to the number of (3, 2)-symmetry groups of the type p — M™, derived
from the group of (3,2)-symmetry G123, or antisymmetry G, belonging to the same
family with G%. The number of (4, 2')-symmetry groups of the type p— M™ derived
from a p-generating group G* it is not possible to find directly, but it can be the
same or larger then the number of 2'-symmetry groups of the M™ -type derived
from the classical-symmetry group G rising the family of G* [4].

The proposed method for the derivation of junior (p, 2)-symmetry groups di-
rectly from the generating p-symmetry group G? makes possible to find the groups
of complete and uncomplete (p, 2')-symmetry. Let the symmetry group G be
given by its presentation, this means by the set of generators {51, Sa,..., S} and
their relations g,(S51,S5s,...,5) = E, n = 1,2,...4, and let the permutation group
P = C, x C} be given by its presentation {ei,es,...,e141}, €] = E, e} = E,
eie; =eje;, 1=2,3,..,1+1,5=1,2,..,04+1, and S,e; = ¢;5;,¢=1,2, ..., k.

Let us consider (p, 2')-symmetry groups G'? derived from G According to the
general theory of (p,2')-symmetry given above, we conclude that:

a) the junior among them are the groups keeping satisfied all relations from
the presentation of G after replacing the generators by the corresponding (p, 2')-
symmetry generators;

b) a junior (p,2')-symmetry group is of the type p— M™, if it remains the I-
multiple antisymmetry group of the M™-type after neglecting the indexes 1,2, ..., p,
but preserving the collection of { signs + or -;

¢) ajunior group of the type p— M™ is the group of complete (p, 2")-symmetry
if from the collection of permutations and sign-changes corresponding to its transfor-
mations it is possible to set apart a system of generators of the group P = €} x #3
If the contrary, such a group of the type p— M™ is the uncomplete (p, 2')-symmetry
group.

For p = 2n—1 the generator e; has no influence on the validiLV of the condition
¢), because ef = e%n 1 — F implies e®™ = ey, but for p = 2n, e?" = E. Therefore,
checking the condition ¢) for some group G for the p - an even number it is
sufficient to consider the powers of the generator e; of the group €}, according mod
2, by using the homomorphism of C,, into Cy : ei" ™! — 1, ei* — E.

So, the group G*? of the type p — M', for the p - an odd number is the group
of complete (p, 2')-symmetry if when neglecting the indexes 1,2,...,p it turns into
the M™ -type group, and for the p - an even number, if the group G obtained
from it by using the homomorphism mentioned, is the M'*!-type group.

Because of the equivalence of (2n —1,2) - and (4n — 2, 2'~1)-symmetry, for the
numbers N,gf) of all (p, 2')-symmetry groups of the type p — M™ and the numbers

(N,gf)) of the groups of the type p — M™ of the complete (p, 2)-symmetry, where

the groups in question belong to the same category, hold the following relationships:
N,(,f"_l) (2™ I)N(zn_1 N(4n ) = (N(4n 2)) for p - an even number, and

for p - an odd number (N,(rf’)) = N — (2m — 1)(N(p) ), supposing that Né P) =

m—1
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2. Survey of complete derivation of junior (p,2')-symmetry symmor-
phic space groups

§1. The (p,2')-symmetry group G'? of the threedimensional Euclidean space
is called the space group of I-multiple colored antisymmetry if its (p, 2')-symmetry
transformations satisfy the condition of space homogeneity, and its symmetries the
condition of local discreteness (see the definition of Zamorzaev and Belov groups
[3,4])-

Even for p = 3,4,6, the derivation of all space (p,2')-symmetry groups of
the type p — M™ from the p -generating groups is enormously large. Therefore
this problem we will divide on three parts: the derivation of junior symmorphic,
hemisymorphic and asymmorphic (p, 2’)—symmetry space groups.

In this paper is given the solution of the first part, and the other two will be con-
sidered in the proceeding work. In order to find the groups mentioned it is sufficient
to extend all p-generating symmorphic groups from the second part of Appendix [4]
to (p, 2')-symmetry groups. According to the general theory of (p, 2')-symmetry, us-
ing the methods given in Chapter 1, by such extension from 316 p-generating Belov
symmorphic groups, the symmorphic (p, 2")-symmetry groups G;’p will be derived.
Since each p-generating group G is given by a finite system of p-generators, for given
p and I the number of different replacements of p-generators by (p, 2')-symmetry

generators containing [ independent, is also finite, and, consequently, the number

of all junior space groups G'? in each family is finite.
For the space groups of [-multiple colored antisymmetry G;’P the number of

all different groups of each fixed type p — M™ is N ), the same is the number of
different groups of the type p — S¥M™ for 1 <'k <1 — m, and for the type p — S*
this number is equal to the number p-generating groups NP (i.e. the junior groups
of the category G%). Hence, in the transition from ! — 1 to [ signs, nontrivial is only
the account of the groups p — M'; but, for sufficiently large values of [ (I > 6 for

the symmorphic groups Gg‘p) NI(P) =:0.

As a final conclusion, for all symmorphic (p,2')-symmetry space groups G
of the type p — M™ (p = 3,4,6), the numbers N are the following: N(a) = 165,
N = 1038, N{¥ = 10473, N(a) 126000, N$* = 1249920, and N* = 0 for I > 6;
N{‘” 779, N(4) 8278, N?E” = 1127633, N{Y = 1680000, N{" = 19998720, and

N =0 for 1> 6; N® = 1203, ¥ = 13587, M{¥ = 199311, N{® = 3139920,
Né,ﬁ) = 38747520, and Nf )= 0forl>6.

The corresponding numbers (N{p}) are: (N(aJ) N(a) (N(4)) 675, (N(4))
6253, (N$Y) = 68992, (N{") = 645120 , and N¥) = 0 for { > 5; (N“”) = 1038,
(N(G)) 10473, (N5¥) = 126000, (N{®) = 1249920, and N = 0 for I > 5.

§2. In order to explain the presented final results we are giving the example
of their derivation and the computation of the numbers mentioned.

Translation space group 1s (or P1) given by the system of generators {a, b, c},

with the antisymmetric characteristic AC : {a,b, ¢, ab, ac, be, abc}, according [10],
generates three p-symmetry groups for p = 3,4,6: 1) {a(®,b,¢}, 2) {a(®,b,c}, 3)
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{a® b, c} (Table P2 of the monograph [4]).

According to the theoretical bacground given in Chapter 1, §2, we conclude
that AC of the group 1) remines the same as AC(1s), so the derivation of (3,2)-
symmetry group from this 3-generating symmetry group of the type 3 — M™ is the
same as the derivation of (2')-symmetry groups of the M™-type from the classical-
symmetry group 1s. Hence, there is one (3,2)-symmetry group of the type 3 — M*
{a®, b, ¢}, one group of (3, 2%)-symmetry of the type 3—M? {a{3), ¥, c}, one group of
(3, 23)-symmetry of the type 3— M3 {a(®), ¥, xc}, and no groups of (3, 2')-symmetry
of type 3 — M for | > 4.

The transition from the generating symmetry group 1s to 4-junior group 2) in-
duces the transition from AC({a,b,c}) = {a,b, ¢, ab, ac, be, abc} to AC({a™,b,c) =
{e1a,b, ¢, e1ab, erac, be, erabe} which falls in two subsets of transformations equiv-
alent in the sense of 4-symmetry {eia,ejab, ejac, ejabe} and {b, ¢, be} forming the
AC({a™,b,c}) = {a,ab,ac,abc}{b,c,bc}, the reduced form of which is {a, ab, ac,
abe}. According to [10], this reduced AC = {a,ab,ac,abe} belongs to the AC-
equivalence class X X X I, represented by the group la [10,11]; therefore, the group
{a®, b, c} gives the same number of the (4, 2')-symmetry groups of the type 4—M™,
as the group la (2")-symmetry groups of the M™-type.

Hence, the 4-colored group 2) generates two groups of (4,2)-symmetry of the
type 4— M1 {a(®) b, c}, {g("), b, c}. The first is the group of complete, and the second
“of uncomplete (4,2)-symmetry. According Chapter 1, §1, this can be concluded from
their extended symbols {a,b,c}/{4a,b,c}, {a,2b,c}/{4a,b,c} and {a,b,c}/{4a,b,
c}, {2a,b,c}/{4a,b,c}. In the first case the symmetry subgroup {4a,b, ¢} coincides
to the section of the symmetry subgroups of the groups {a(* b, ¢} and {a,b,c} on
which it splits, and in the second its symmetry subgroup {4a, b, ¢} coincides to the
section of the symmetry subgroups of the groups {a(*) b, ¢} and {a,d, ¢}, defining
together the group {a*),b,c}. Proceeding in the same manner, from 4-generating
group {a(¥), b ¢} we derive four groups of (4,2%)-symmetry of the type 4 — M?
{a®,b,c'}, {a®), ¥, c}, {a),b, ¢} and {al®’ b, ¢} from which, as we can conclude
from their extended symbols, only the first is the complete (4, 2%)-symmetry group.
Finaly, from the same 4-generating group we derive seven groups of the uncom-
plete (4, 23)-symmetry of the type 4 — M3 {a® b xc'}, {al®), +b, ¢}, {+a® b, ¢'},
{a@ «b '}, {al®' «b,*c}, {*a®), ¥, ¢} and {a®, *b, ¢}, and no groups of (4, 21)-
symmetry of the type 4 — M' for [ > 4.

The acount of the derivation of complete (4, 2')-symmetry groups of the type 4—
M™ from the 4-generating group {a®, b, ¢} it is possible to obtain without making
the complete catalogue. Using the homomorphism €4 — (' given in Chapter 2, §1,
we can find that AC({a®,b,c} is of the form {e;,e;,e1,e1} type (5)'. Using the
results [11, Appendix], we can simply calculate the numbers Np({a®),b, c}) and
(N ({03, c})).

Treating in the same way the 6-generating group {a(®),b,¢} we obtain the
same results as for {a(® b, ¢}. Because the p-generating groups {a(®,b,c} and
{a®), b, ¢} belong to the same AC-equivalence class, for every fixed m they will give
the same numerical results, and even more, the (p, 2*)-symmetry groups obtained
will be corresponding in pairs with regard to their structure (this means, one (4, 2')-
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symmetry group of the type 4 — M™ can be transformed in the corresponding
(6,2")-symmetry group of the type 6 — M™ replacing the index 4 by 6, and keeping
unchanged the set of symbols _, ’, * and their combinations dencting the multiple
antisymmetry transformations.

Because the complete cataloguation of all symmorphic (p, 2')-symmetry group
Gg” is to large even for their simplest type p— M!, we will give only the numerical
results and the acount of these groups, obtained using the AC-method.

The survey of all p-generating symmorphic space groups G (p = 3,4,6) is
classified in the families [4, P2] and followed by their AC and by the number of the
AC-equivalence class [10,11]. The existential conditions remine the same. Wishing
to make his own control of the final results, the reader can simply find the form
and the type of each AC(G®)), and using the results [11, Appendix] calculate the
numbers Ny, (G)) and (N, (G®))).

Table 1
Iy 1Pl {a 2} AC : {a,b,c,ab,ac, bc,abc};
1) {a(s) AC :{a,b,c,ab,ac, be,abe};
2) {a® b c} AC : {a,ab,ac,abc}, XX XI, 1a;
3) {a®,b, ¢}, AC : {a,ab,ac,abec}, XXXI,1a.
I1T) 3s,P2,{a,b,c}(2), AC : {c}{2,2a,2b,2ab};
1) {a,b,c3}(2), AC : {c}{2,2a,2b,2ab};
2) {a,b,c*}(2), AC : {c}{2,2a,2b, 2ab};
3) {a,b,cD}(2()), AC : {c}{2,2qa,20b,2ab};
4) {a®)b,cD}(2), AC : {c}{2,2b}{2a,2ab}, VIII, 8s;
5) {a,b,c3}(2(), AC : {c}{2,2a,2b,2ab};
8) {a,b,c(®}(2), AC : {c}{2,2a,2b,2ab};
7) {a®,b,c3)}(2), AC : {c}{2,2b}{2a,2ab}, VIII,8s;
8) {a,b,c®}(22), AC : {c}{2,2a,2b,2ab};
9) {a®,b,c®}(2), AC : {e}{2,26}{2a,2ab}, VIII, 8s.
1V) 4s,B2,{a,b,(a+¢c)/2}(2),AC : {2,26}{2(a + ¢)/2,2b(a + ¢)/2};
1) {a,b,(a+¢c)/2}2),  AC:{2,20}{2(a+¢)/2,2b(a+c)/2};
2) {a,b,(a+c)/2D}2),  AC:{2,26}{2(a+¢)/2,2b(a + c)/2};
3) {a,b,(a+c)/20}N2®), AC:{2,26}{2(a + ¢)/2,2b(a+ c)/2};
4) {a,b®, (a+c)/2M}(2), AC:{2}{2(a+c)/2,2b(a+c)/2}, VI, bs;
5) {a,b (a+ ¢)/230}(2(), AC : {2,26}{2(a + ¢)/2, 2b(a + ¢)/2};
6) {a,b,(a+¢c)/2}(2), AC:{2,26}{2(a+¢)/2,2b(a+ c)/2};
7) {a, b, (a+c)/20}(2(3), AC: {2,26}{2(a+ ¢)/2, 2b(a + ¢)/2};
8) {a,b®, (a+¢)/2®}(2), AC: {2}{b}{(a+¢)/2}, X X,25s.
V) 5s, Pm, {a,b,c}(m), AC : {a,b,ab}{m, mc};
1) {a®,b,c}(m), AC :{a,b,ab}{m, mc};
2) {a™®, b, c}(m), AC : {a,ab}{m,me}, X XII,28s;
3) {a®), b, c}(m®), AC : {a,ab}{m,mc}, XX II,28s;
4) {a™, b, 2} (m), AC : {a,ab}{m}{c}, XIII,14s;
5) {a®,b,c}(m?), AC' : {a, b, ab}{m, mc};
6) {a®,b,c}(m), AC : {a,ab}{m, mc}, XX 1I,28s;
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7) {a®),b, D} (m), AC : {c}{m}{a,b,ab}, XVII,20s;
8) {al®, b, c}(m?), AC : {a,ab}{m, mc}, XXII,28s;
9) {a(®, b, c(H}(m), AC : {a,ab}{m}{c}, XIII, 14s.

VI) 6s, Bm,{a,b,(a+c)/2}(m), AC: {mH(a+c)/2,b(a+ ¢)/2}; |
1) {a®, b, (a+c)/2}(m), AC : {m}{(a + ¢)/2,b(a+ ¢)/2}; ‘
2) {a,b®, (a4 c)/2}(m), AC : {mH(a + ¢)/2}{b}, XX, 25s; |
3) {a b9, (a+ c)/2}(mD), AC: {m}{(a+ c)/21{b}, XX, 255, |
4) {a®,b, (a+ c)/2D}(m), AC : {m}{(a + c)/2,b(a+ ¢)/2}; |
5) {a(®. b, (a+ )29} (m), AC {m}H(a + /2 b(a+ /2) |
6) {a,b®, (a+ ¢)/2}(m®), AC : {m}{(a+¢)/2,b(a+ c)/2}; l‘
7) {a, b9, (a+ ¢)/2}(m), AC : {mH{a + e)/2}{b}, X X, 255; .
8) {a,b®, (a+ ¢)/2}(mD), AC  {m}{(a + c)/2}{b}, XX, 25s;

9) {a, 8@, (a + ¢)/2D}(m), AC : {mM(a+ ¢)/2,b(a+ ¢)/2}; |
10) {a,b®, (a + c)/2(2)}(m(2)}, AC : {m}{(a+¢)/2,b(a+ ¢)/2}. ‘

X) 11s,1222,{a,b,(a + b+ ¢)/2}(2:2),AC : {(a + b+ ¢)/2}{2,2',22'}; ‘
1) {a@,6 (a+b+e)/20N2:2), AC:{(a+b+c)/2}{2,2,22'}. ‘

XII) 13s, Pmm2, {a,b,c}(2m), AC : {c}H{{m, ma}, {2m,2mb}};
1) {a,b,c3}(2m), AC : {e}{{m, ma}, {2m, 2mb}};
2) {a,b,eH}(2m), AC : {eH{{m, ma}, {2m,2mb}}; ‘
3) {a,b,cD}(2m@), AC : {e}{{m, ma}, {2m, 2mb}}; |
4) {a,b,c®}(2®m), AC : {c}{m, ma}{2m, 2mb}, XV I, 19s;
5) {a®, b, c4}(2m), AC :{aH{cH{m}{2m, 2mb}, 13s.5;
6) {a®,b, D} (2m?), AC : {a}{c}{m}{2m, 2mb}, 13s.5 \
7) {a®,52), D} (2m), : AC : {cH{/m, ma/, /2m,2mb/}, 13.7+;
8) {a,b, 3} (2m(2)), AC : {cH{m, ma}, {2m,2mb}};
9) {a,b,c®}(2m), AC : {cH{m, ma}{2m,2mb}, XV1I,19s;
10) {a,b,c9}(2m), AC : {c}{{m,ma}, {2m,2mb}};
11) {a,b,c®}(2m3), AC : {e}H{{m, ma}, {2m,2mb}};
12) {a,b,c®}(2CIm), AC : {cH{m,ma}{2m,2mb}, XVI, 19s;,
13) {a®,b,®}(2m), . AC :{a}{cH{m}{2m, 2mb}, 13s.5;
14) {a™®,b, 3}(2m?), AC : {a}{c}{m}{2m, 2mb}, 13s.5;
15) {a(2},b,c(6)}(2m), AC : {a}{cH{m}{2m, 2mb}, 13s.5;
16) {a®, b, O} (2m?), AC : {a}{c}H{m}{2m, 2mb}, 13s.5;
17) {a®),b6(2), 3} (2m), AC : {cH{/m,ma/, [2m,2mb/}, 135.T;
18) {a®), b, (9} (2m), - AC A{c}{/m,ma/, [2m,2mb/}, 135.7.
XIIT) 14s,Cmm2, {a,(a+b)/2,c}(2m),AC : {(a + b)/2}{c}{m, 2m};
1) {a, (a + )72, 9 2m), AC - {(a + 8)/2){c}{m. 2m}; |
2) {a,(a+b)/2,cD}(2m), AC: {(a +D)/2}H{ec}{m, 2m}; ;;
3) {a.(a+8)/2,c9)2m®),  AC: {(a-+b)/2HcHm, m);
4) {a,(a+b)/2,D}2@m), AC : {(a + b)/2}{cH{m}{2}, XXIII,3Ts;
5) {a, (a+ 5)/23), D} (2m), AC : {(a +b)/2}{c}{m, 2m};

6) {a,(a+b)/2(2),c(‘3)}(2m(2)), AC : {(a + b)/2}{cH{m, 2m}; !

* The elements in the parentheses // remain fixed on their places [12]
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7) {a,(a +0)/2), N}2Pm),  AC: {(a +b)/2}{c}{m}{2}, X XIII,3Ts;
8) {a,(a+b)/2,c®}(2m*), AC : {(a + b)/2Hc}{m, 2m};
9) {a,(a+b)/2,e3}1(23m), AC : {(a+ b)/2}{cH{m}{2}, X XIII,3Ts;
10) {a, (a + b)/2,c®}(2m), AC A{(a+ b)/2Hc}H{m, 2m};
11) {a,(a +b)/2, &} (2m®), AC : {(a+ b)/2}{cHm, 2m]};
12) {a,(a+5)/2, 0} (2)m), AC : {(a+b)/2H{eH{mH2}, XXIIT,37s;
13) {a,(a+b)/23), B3)}(2m), AC {(a + b)/2}{c}{m, 2m};
14) {a,(a +b)/2), (3)}(2772(2)) AC : {{a+ b)/2}{cH{m, 2m}; ‘
15) {a,(a+b)/23,3}(2@m AC :{(e+ b)/2}{c}{m}2}, XX III, 37s; |
16) {a,(a + b)/2(?), C(G)}(Qm), AC :{(a+ b)/2}{c}{m, 2m}; ‘
17) {a,(a+ b)/23), (O} (2m(2), AC - {(a+ b)/2}H{cHm, 2m};
|

18) {a,(a+8)/2®), O} (2m), AC < {(a+ b)/2H{ecH{m}{2}, XX III,37s.
XIII) 155, Bmm2, {a,b, (a + ¢)/2}(2m),AC : {(a + ¢)/2}{m}{2m, 2mb};

1) {a,b,(a+ c)/Q(SJ}(‘Zm), AC : {(a+c)/2H{mH{2m, 2mb};
2) {a,b,(a+¢)/2M}(2m), AC : {(a+ c)/2H{m}{2m, 2mb};
3) {a,b,(a+ ¢)/2H}(2m®), AC :{(a + c)/2H{m}{2m, 2mb};
4) {a,b, (a+ c)/2(4)}(2(2_)m), AC : {(a +c)/2H{m}H{2m, 2mb};
5) {a,b,(a+ ¢)/2D}(22m), AC : {(a+c)/2H{m}{2m, 2mb};
6) {a,b(2), (a+c)/2H}(2m), AC {(a+c)/2H{m}{2}{p}, X XIII, 3Ts;
7) {a, 8, (a+¢)/20}2m(D),  AC: {(a+ c)/2H{m}{2}{b}, XX III, 37s;
8) {a,b,(a+c)/23}(2m), AC - {(a+ ¢)/2}{m}{2m, 2mb};

)

)

{(a+c)

{(a+e¢)

: {(a-+0)
9) {a,b,(a+ c)/2(3)}(2(‘)m), AC {(a+ c)/2}{m}{2m, 2mb};
10) {a,b, (a4 ¢)/23)}(2Pm(2), AC : {(a+ ¢)/2}{m}{2m, 2mb};

{(a+c)

{(a+c)
)
)
)
)
)

11) {a,b,(a+¢)/2(®)}(2m), AC : {(a+ c)/2}{m}{2m, 2mb};
12) {a,b,(a+c)/2(9}(2m2), AC : {(a+ ¢)/2 H{m}{2m, 2mb};
14) {a,b,(a+c)/29} (22, AC {(a+ ¢)/2}{m}{2m, 2mb};
15) {a,b® (a + ¢)/23)}(2m), AC : {(a+¢)/2}{m}{2H{b}, XX III,3Ts;
16) {a,b®, (a+ ¢)/23)}(2m(?), AC : {(a+ ¢)/2}{m}{2}{b}, XX III,37s;
17) {a, b3, (a + c)/2(®)}(2m), AC : {(a+ c)/2H{m}{2}{b}, XX III,37s;
18) {a,b®, (a+c)/28}2m)),  AC: {(a+ ¢)/2}{m}{2}{b}, XXIII, 3Ts;
VI) 16s, Imm2,{a,b,(a+b+¢c)/2} (2m), AC : {(a+ b+ c)/2}{m, 2m};

1) {a,b,(a+b+c)/2}2m), AC : {{a+ b+ c)/2}{m, 2m};

2) {a,b,(a+b+c)/2H}(2m), AC : {(a+ b+ c)/2}{m, 2m};

( )
(a+b+¢)/20Y2m®),  AC: {(a+b+ ¢)/2}H{m, 2m};
(a+b+c)/2M}2Pm),  AC: {(a+ b+ c)/2H{m}{2}, XX, 25s;
(a+b+c)/2C832m®),  AC: {(a+b+c)/2}{m,2m};
(@ +b+c)/23H2Pm),  AC: {(a+ b+ c)/2){m}{2}, XX, 25s;
(a+b+¢)/200}(2m), AC : {(a+b+c)/2H{m, 2m};
i ( ) )
) )

){a

a+b+c)/2O}2m),  AC: {(a+ b+ c)/2}{m, 2m]};
(a+b+c)/29}2@m),  AC:{(a+b+c)/2}{m}{2}, XX, 25s. |
XIV) 175 Fmm2, {a, (a+b)/2,(a + c)/2}(2m), |
AC : {(a—f—c)/? (a+e)/2(a+b)/2}{m, 2m}{m(a+c)/2, 2'm(a+c)/2(a+b)/2} |
1) A{a,(a+8)/2,(a+c)/2(3)a}(2m),
AC : {(a+¢)/2,(a+¢c)/2(a+b)/2}{m, 2m}{m(a+c)/2,2m(a+c)/2(a+b)/2};

b,
, b,
, b,
b
, b,
a,b
a,b,
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10)
11)
12)
13)
14)
15)
16)

VI
1)
2)
3)
4)
5)
6)
7)
8)

9)

{a, (a+0)/2,(a+ c)/20}(2m),

(
AC :{(a+¢)/2,(a+ c)/?((a +b)/2H{m, 2m}{m(a+ ¢)/2,2m(a + ¢)/2(a + b)};

{a, (a+0)/2,(a+c)/2D}(2m),

AC :{(a+c)/2,(a+c)/2(a+b)/2}{m, 2m}{m(a+¢)/2,2m(a+ ¢)/2(c + b)};

{a, (a+0)/2,(a+ ¢)/2(4)}2(2)m),
AC {(a+c)/2H(a+ b)/2H{2}{m}, X X IIT, 37s:
{a,(a+5)/2®),(a+ ¢)/2}(2m),

AC : {(a+¢)/2,(a+c)/2(a+b)/2}{m, 2m}{m(a+c)/2, 2m(a+¢)/2(a+b)/2};
{a, (a+8)/2, (a + ¢)/2D}(2mD),
AC : {(a+¢c)/2,(a+c)/2(a+b)/2H{m, 2m}{m(a+c)/2, 2m(a+c)/2(a+b)/2};

{a, (a+)/2(2), (a+ ¢)/2(4)}(2(2)m),
AC {(a+c)/2H{(a +b)/2}{2}{m}, X X III, 37s;
{a,(a +8)/2,(a+¢)/2D}(2m®),

AC : {(a+¢)/2,(a+c)/2(a+b)/2}{m, 2m}{m(a+c)/2, 2m(a+c)/2(a+b)/2};

{a, (a+1)/2,(a +)/2D}(2)m),
AC : {(a+c)/2H(a + b)/2}{2}{m}, X X III,37s;
{a,(a+1)/2,(a+¢)/20}(2m),

AC : {(a+¢)/2,(a+c)/2(a+b)/2H{m, 2m}{m(a+c)/2, 2mia+c)/2(a+b)/2};

{a,(a+10)/2,(a +¢)/20}(2m?),

AC : {(a+¢)/2,(a+c)/2(a+b)/2H{m, 2m}{m(a+¢)/2,2m(a+c)/2(a+b)/2};

{a, (a+8)/2, (0 -+ 0)/29) (2Cm),

AC {(a+e)/2H(a+ b)/2H{2{m}, X XIIT 37s:
{a,(a+5)/2®), (a + ¢)/ 203} (2m),

AC': {(a+)/2}{(a + V)2 }Hom}, XX 111,575
{a,(a+8)/2®), (a + ¢)/23}(2m(2),

AC : {(a+¢)/2H(a+ b)/2H{2}{m}, X X III, 37s;
{a, (a-+ b)/2, (a + )29} (2Om),

AC{(a+ 0)/2}{(a+ b)/2) {2} {m}, X XI11,315;
{e,(a+8)/23), (a + ¢)/23}(22)Im(2),

AC {(e+c)/2H{(a + b)/2}{2}{m}, X X III, 37s.
225, P4,{a,b,c}(4), AC :{c}{4,4a};
{a,b,¢(3)}(4), AC : {cH4,4a};

{a, b,c}(4(4)), AC : {c}{4,4a};
{fﬂ,b,c(z)}(4(4)), AC : {c}{4,4a};
{a®,bD c}(4®),  AC: {c}{4,4a};

{a®, 6, D} (4D), AC : {c}{4,4a};
{a,b,c®}(4), AC : {c}{4,4a)};

{a,b, 4} (42, AC : {e}{4,4a};
{a,b,cM}(4M), AC : {c}{4,4a};

{a,b, M} (4~ ), AC : {e}{4,4a};

10) {a®,b® D}4),  AC: {a}{c}{4}, XX, 25s;

11)

12)
13)
14)

{a®, 63 DY (44), AC : {a}{c}{4}, X X, 253;
{a, b, c®}(4(2)), AC : {c}{4,4a};
{a,b,c®}(4), AC : {c}{4,4a};
{a, b,(®)}(4(2)), AC : {c}{4,4a};
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15) {a®®), 53, c(3)}(4),
16) {a®), (), c(9)}(4),

1) {a,b,(a + b+ c)/29)(4),
2) {a,b,(a+b+c)/2}(4),
3) {a,b,(a+ b+ c)/2D} (44,

4) {a,b,(a+b+c)/2D}(4),

5) {a,b,(a+b+c)/2D}(4B®),
6) {a,b,(a+ b+ c)/2D}(4M),
7) {a,b,(a+b+c)/2D}(4~*),
8) {a,b,(a+b+c)/23}(4),

9) {a,b,(a+b+c)/2(9}(4),

10) {a,b,(a+ b+ c)/2}(4(2),

XIII) 24s, P4mm, {a,b, c}(4m),

1) {a,b,c3}(4m),

2) {a,b,c®}(4m),

3) {a,b, D}(4m?),

2 {orb, O} (4Dm)

5) {a,5,c®)(4@mH)
6) {a®,b6®) (9} (4m),
7) {a®) b2 (D} (4m(?),
8) {a,b,cfa)}(ﬁlm(:’)),

9) {a,b,c3}(4P)Im),

10) {a, b, c3}(42hm(2),
11) {a,b,c(®}(4m),

12) {a,b, 9} (4m?),

13) {a,b,c9}(4m),

14) {a, b, ¢} (4CIm(2),
15) {a®), @), )} (4m),
16) {a(), 82, (31} (4m(D),
17) {a®, (), (9} (4m),
18) {a(®, (), (O} (4m(D),

1) {a,b,(a+b+c)/20}(4m),
2) {a,b,(a+b+c)/2W}(4m),
3) {a,b, (a+b+)/20}(amD),
4) {a,b,(a+ b+ ¢)/20}(4@)m),
)
)

5) {a,b, (a+b+c)/20}(4CmA),

6) {a,b (a+b+c /2(3)}(4?11(2)),
7) {a,b,(a+b+¢)/23}(4Pm),

8) {a,b,(a+b+c)/23}(4PIm(2))y,

9) {a,b,(a+b+c)/20)}(4m),
10) {a,b,(a+b+c)/2O}(4m),

AC : {
AC :
AC :
AC :
AC ;
AC .

AC
AC

AC
AC

AC

AC
AC

AC
AC

AC : {a}{c}H4}, X X, 25s;
AC : {a}{c}{4}, X X, 25s.
XIX) 23s,14,{a,b,(a+b+c)/2}(4),

(a+b+ c)/2}{4};
{( +b+c)/2H{4};
{(a+b+c)/2}{4};
{(a+b+c)/2}{4);
{(a+b+c)/2}{4};
{(a+b+e)/2}{4};

Hla+b+e)/2}H4);
{(a+b+¢)/2H{4);
AC

{(a+b+c)/2H4};

{(a+b+c)/2}{4);
{la+ b+ c)/2}{4}).
AC
AC
AC :
AC
AC
AC
AC :
AC
AC
AC :
AC
AC
:{cH{mH4,4a};
AC :
AC :
AC
AC
AC
AC

XX) 25s, I4mm, {a,b, (a+ b+ c)/2}(4m),AC :
AC:
AC :

{cH{m}{4,4a};
{cH{m}{4,4a};
{cH{m}{4,4a};
{cHm}{4,4a};
{c}{m}{4,4a};
{cHm}{4,4a};

{a}{c}H{4}{m}, XXIIT, 37s;
{aH{cH4H{m}, XX IIT,37s;

{cH{m}{4,4a};
{cH{mH4, 4a};
{eH{m}{4,4a};
{cHm}{4,4a};

{eH{m}{4,4a};
{e}{m}{4,4a};

{aH{cHd}{m}, X XIII,37s;
{a}{c}H{4}{m}, XXIII, 3Ts;
{aHe}{4H{m}, X XIII,37s:
{a}H{cH4}{m}, XX III, 37s;

{(a+b+c)/2}{4H{m};
{(a+b+c)/2}{4}{m};
{(a+b+c)/2}{4H{m};

H{la+ b+ c)/2}{a}{m};
{(a+b+c)/2}{4}{m};
AC -
AC

{(a+b+c)/2H{aH{m};
{(a+b+c)/2H{aH{m};

H{la+b+c)/2}{4}{m};
Hla+b+c)/2}{4}{m};
AC
AC :

{(a+b+c)/2H{aH{m};
{(a+b+c)/2}{4H{m};
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11) {a,b,(a+ b+ c)/2(}(4Pm), AC : {(a+ b+ c)/2H{4H{m};
12) {a,b,(a+b+¢)/20}4PDmD),  AC : {(a+b+c)/2H4H{m};
IV) 26s, P4,{a,b,c)(4), AC : {4, 4b}{4c, 4bc);
1) {a,b,c)(&(4)), AC : {4,4b}{4c, 4bc);
2) {a,b, ) (44, AC : {4, 4b}{4c, dbc};
3) {a®, 6, c)(4®), AC : {c}{4,4b}, VI, 6s;
4) {a@, b, (2)(d*), AC : {cH4,4b},VI,6s.
XXI) 275,14, {a,b, (a + b+ ¢)/2}(4), AC : {4, 4(a + b+ c)/2};
1) {a,b,(a+b+c)/2}(A1), AC {4, 4a+ b+ c)/2};
2) {a,b,(a+b+c)/2D}EAM), AC : {4,4(a + b+ c)/2};
3) {a® 53 (a4 b+ c)/2D}(D), AC : {d}{(a+ b+ c)/2}, XIX,23s.
XXII) 28s, P4/m,{a,b,c}(4: m), AC : {4,4a}{m,cm};
1) {a,b,c}(4® :m), AC : {4,4a}{m, em};
2) {a,b,c}(4® : m?), AC : {4,4a}{m, cm};
3) {a,b,cP}(4W : m), AC : {4,4a}{m,cm};
4) {a®, b, ¢} (44 : m), AC : {4,4a}{m,em};
5) {a®, 63, e} (4 : m(D), AC : {4,4a}{m,cm};
6) {a®,b@, c}(4(4) : m), AC : {c}{m}{4,4a}, XIII, 14s.
XX) 29s,I4/m, {a,b,(a+ b+ c)/2}(4 : m),AC : {(a + b+ ¢)/2}{4}{2};

1) {a,b, (a+b+c)/2}(4? : m), AC : {(a+b+c)/2}{4H{m};
2) {a,b,(a+b+c)/2}(4D : m?)), AC : {(a+b+ ¢)/2}{4}{m};
3) {a,b, (a+ b+ c)/2D}4D : m), AC :{(a+ b+ e)/2}{4H{m};
4) {a,b,(a+b+c)/2D}4D : m®P)),  AC : {(a + b+ c)/2}{4}{m}.
XX) 34s,I42m,{a,b,(a+ b+ c)/2}(4 : 2), AC : {(a+ b+ c)/2}{4}{2};
1) {a@ 6@ (a+b+¢)/20YE:2), AC:{(a+b+c)/2}{4}{2};
2) {a®, 6 (a4 b+ ¢)/2D}(E : 2), AC : {(a+b+ c)/2}{4}{2}.

XXIV) 38s, P3,{(a,b),c}®, AC : {e};
1) {(a,b),c}(3®), AC i {e};
2) {(a,b),c®}E), AC i {c};
3) {(a,),c¥}(3(), AC : {c};
4) {(a,b),cP}(3(=3)), AC : {c};
5) {(a®, (), c}®), AC : {c};
6) {(a(a),b(ﬂ')),c(i*)}(ﬂ}, AC : {c);
7) {(a,b),cD}E), AC : {e};
8) {(a,b), cM}(3®), AC : {e};
9) {(a,b), (D}, AC : {c};
10) {(a,b),c®}(33), AG s e}
11) {(a,b), cD}(3(=3)), AC 2 {eli
12) {(a®,5()), D}, AC :{c};
13) {(a®,5), M}, AC : {c}.

XXIV) 39s, R3{a,b,c}®, AC :{a};
1) {a,b,c}(3®), Act: {a);
2) {a®, () 30}3) AC : {a};
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3) {a®, () (3336, AC ; {a};
4) { a<3 , 603, 1(3(=3)), AC : {a};
5) 6(4) c(4)}(3) AC : {a};
6) {a(2 5(2) , {23363, AC : {a};
7) {a(ﬁ) b6, ¢(6)}(3), AC : {a};
8) {a(®, 66),c®)(30)), AC : {a};
9) {a (®), (), c(9}(3(-3)), AC : {a}.
XIX) 405, P3ml, {(a,b),c}(3m), AC :{c}{m};
1) {(a,b) r(B)}(Sm AC : {cH{m};
2) {(a, b) ct9}(3m), AC : {cH{m};
3) {(a,8), OYFm®),  AC: {cHm);
4) {(a,b),c®}(3m), AC : {cH{m};
5) {(a,b), c&}(3m), AC : {eH{m};
6) {(a,b),c®}(3m2), AC : {c}H{m}.
XIX) 41s, P31m,{(e,b),cHm3), AC : {c}{m};
1) {(e,d),c®}(m3), AC : {e}{m};

2) {(al®,5),c) (m3),
3 a®, p(3)), c(33}(mB)
4) {(a,b),cM}(m3),

AC
AC :
AC -

H{eHm};

{c}{m};
{eH{m};

)
12) {(a(®,b®)
13) {(a®,6®),e®}(m3),  AC: {cHm};
14) {(a®,p®),

(

o
5) {(a,b), D} (m23), AC : {eH{m};
6) {(a,b), D} (m>3), AC : {cH{m};
7) {(a®,19),m®3),  AC {c}{m};
8) {(a'®, b{f')) B} m@3),  AC: {c}{m};
9) {(a,b),c(}(m3), AC : {eH{m}
10) {(a,b), O }(m23), AC : {eH{m};
11) {(a®, b(a) B (m3), AC : {c}{m};

(

2N (m®3),  AC : {c}{m);

O} m®3),  AC:{c}{m).

XIX) 42s, R3m{a,b, c}(m3), AC : {a}{m};
) {a®,63), @) (m3), AC :{a}{m};
) {a®, 6D D} (m3), AC : {a}{m};
) {a(4) B (DY (mD3), AC : {a}{m]};
) {6 Y m®3),  AC : {a}{m}:
) {a (6) , b(6) c(s)}(nﬁ) AC {aH{m};
6) {a ©) b8 (8} (m(3), AC : {a}{m}.
) 43s, P6, {(a,b), c}(3 : m), AC : {m,cm};
1) {(a,b), c}(?(s) m), AC : {m,em};
) {(a®, 080, ¢}(3 : m), AC : {m,em};
3) {(a,b),c}(3®) : m(q)) AC : {m, em};
) {(a, ) c(z)}(B(  #), AC {c}{m}, XTX,23s;
) {(a®®, 603, c}(3 : m), AC : {m,em};
) {(0(3J b3, (DY(3 : m), AC : {cH{m}, XX, 23s.
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XXT) 44s, P321,{(a,bd),c}(3: 2), AC : {2,2¢}; |
1) {(a®,b3)) ¢}(3:2), AC : {2,2¢}; |
2) {(a®,b®)),c}(3 : 22), AC  {2,2¢); "
3) {(a®,8®3), D}(3: 2), AC : {e}{2}, XIX,23s. |
VI) 47s, P62m, {(a,b),c}(3:m2), AC :{m){2,2c}; !
1) {(a(a),b(s)), c}(3 : m2), AC : {m}{2, 2¢}; |
2) {(a®,63)),c}(3: m»2), AC : {m}{2, 2c}; |
3) {(a®,5(3)), c}(3 : m2(D), AC : {m}{2, 2¢}; i
4) {(a®,6®),c}(3: m23)),  AC : {m}{2,2c};
5) {(a®,53)), 2}(3 : m2), AC : {cH{m}{2}, X X, 25s; ‘
6) {(a®,60)),c®}(8: mP2),  AC: {c}{m}{2}, X X, 25s.

XIX) 49s, P6, {(a,b),c}(6), AC : {c}{6); ‘
1) {(a,b),c}(6®), AC : {c}{6}; |
2){(a,b), c)}(6), AC : {cH{6};

3) {(a,b),cD}(6), AC : {cHb};
4) {(a,b), ®}(6(-3)), AC : {cH{6}; .
5) {(a,b),c™}(6), AC : {cH{6};
6) {(a,b),c(4)}(6(2)), AC : {cH6}; ‘
7) {(a,b),c}(619), AC : {cH{6};
8) {(a,b),cD}(6), AC': {cH6};
9) {(a, ), c}(6(%), AC - {cHS6};
10) {(a,b),c(3)}(6(2)), AC: {C}{B};
11) {(a,b), <>}(6(%), AC: {cH{6};
12) {(a,b),}(6(-6)), AC : {cH{6};
13) {(a,b,ct®}(6), AC : {c}{6};
14) {(a,b), @} (6™), AC : {cH{6};
15) {(a,b), c®}(6) AC : {cH{6};
16) {(a,b),c®}(6(=3)), AC : {cH{6};
17) {(a, ), c®}(6(%), AC : {cH{6};
18) {(a,b,c®}(6(-6)), AC : {c}{6}.
XX) 50s, P6mm, {(a,b),c}(6m), AC: {c}{6}{m};
1) {(0,8), <@} (6m), AC : {}{8}m);
2) {(a,), c}(6m), AC {cH{6){m):
3) {(ab),c®}(6m), 4C - {¢}6{m);
4) {(a,),c™}(6)m), AC : {cH6H{m};
5) {(a, ), O} (6@m®), AC : {cH{6}{m};
6) {(a,b), ®}(6m), AC : {cH{6H{m};
7) {(a,b), ®}(6m), AC : {cH{6}{m};
8) {(a,0),OHDm®),  AC: {c}{6}{m):
9) {(a,b),c®}(6m), AC : {c}{6}{m); 3
10) {(a,b), c®}(6m), AC : {cH{6H{m};
11) {(ab), ) (§@m), AC': {c}{6}{m):

12) {(a,8),c®}(6@m®),  AC: {cH6}{m}.
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XXI) b1s, P3,{(a,b), c}(6), AC : {6,6c};
1) {(a,b),c}(6), AC : {6, 6c};
2) {(a,b),c}(6(9), AC : {6,6¢c};
3) {(a,b, D}(6E), AC : {¢}{6}, XIX,23s.
XXI) 525, R3{a,b,c}(6), AC : {6, 6a};
1) {a,b,c} (65N, AC : {6,6a};
2) {a,b,c}(6(%)), AC : {6,6a};
3) {a®, b2 (}(6(3)), AG : {a}6), X 1X, %8s
VI) 53s, P6/m, {(a,b),c}(6:m), AC : {6}{m, cm};
1) {(a,b),c}(6® : m), AC {6} m, em};
2) {(a,b),c}(6® : m), AC : {6}{m, cm};
3) {(a, b),c(Q)}((i(a) m), AC A{cH6}m}, X X, 25s;
4) {(a,b), cD}(6) : m), AC : {cH{6}{m}, XX, 25s;
5) {(a,),cH(6® : m), AG : {8}{rm, om);
6) {(a,b),c}(62) : m), AC  {6}{m, em}.
XXIV) 59s, P23,{a,b,c}(3/2), AC : {a};
1) {a,b,e}(3(3/2), AC : {a};
2) {al®, b2 (2}(3(3)/2), AC : {a}.
XXIV) 60s,123,{a,b,(a+b+¢)/2}(3/2), AC : {(a+ b+ ¢)/2};
1) {a,b,(a+b+¢)/2}(33/2), AC : {(a+b+e)/2);
2) {a®,6) (a+b+c)/2M9}(3/2), AC {la+b+c)/2};
3) {a,b,(a+b+c)/20}(3)/2), AC : {(a+b+¢c)/2}.

XXV) 61s, F23,{a,(a+b)/2,(a+ ¢)/2}(3/2);
1) {a,(a+b)/2,(a+¢)/2}(33/2).

XXI) 625, Pm3, {a,b,c}(3/2m), AC : {m, ma};
1) {a,b,¢}(3®)/2m), AC : {m, ma};
2) {a,b,c}(3)/2m2), AC : {m, ma};
3) {a® b6 }(33) /2m), AC : {a}{m}, XIX,23s.
XIX) 63s,Im3,{a,b,(a+ b+ c)/2}(3/2m), AC {(a+ b+ c)/2}{m};
1) {a,b,(a+b+c)/2}(3®)/2m), AC {(a+ b+ c)/2}{m};
2) {a,b,(a+b+¢)/2}(33)/2m2), AC : {(a+b+c)/2H{m]};
3) {a,b,(a+ b+ c)/2D}(33)/2m), AC : {(a+b+c)/2}{m};
4) {a,b,(a+b+¢)/2}(3B) /2m2), AC : {(a+b+c)/2}).
XXIV) 645, Fm3,{a,(a+6)/2, (a+c)/2}(3/2m),AC : {m};
1) {a,(a+5)/2,(a+c)/2}(3®)/2m), AC  {m};

2) {a,(a+b)/2,(a+¢c)/2}(3P/2m®),  AC:{m}.
XIX) 66s,I43m,{a,b,(a+ b+ ¢)/2}(3/4), AC  {(a+b+c)/2}{4};
1) {a®,5®), (a+ b+ c)/20}(3/4), AC : {(a+b +c)/2){4);
2) {a®,6®, (a + b+ ¢)/2(}(3/4(2), AC = {(a+b+c)/2}{4}.
From Table 1 is clear that the almost all AC of junior symmorphic p-syminetry
space groups are isomorphic to the already investigated AC [10,11] given in the par-
tial catalogue of AC of the classical-symmetry Fedorov groups G [11, Appendix].

The only exceptions are a few junior p-symmetry groups from the family 13s , which
are investigated independently.
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Extending the proposition that groups possessing isomorphic AC' generate the
same number of (2')-symmetry groups of the M™-type which are corresponding
in the sense of structure [10,11,12] on p-generating groups, we have the numbers
Nin(G) given in Table 2, where by G is denoted the representative of the corre-

sponding AC-isomorphism equivalence class.
Table 2

G

1

Irr
v

V

VI
VIII
X

XIT
X-TEE
XIV
XVI
XVII
XIX
XX
XXTI
XXIT
XXIIT
XXIv
XXXI
13s.5.
13s.7.

=

-

B b= = GO DD =] L0 =] — O 0D OO B O =
o

23
19

28
15
34
24
84
10
186
126
108
348
58
6
42
3
75
210

4
570
486

N3(G)
1
168
42
266
84
756
28
3948
1344
1260
7812
504

168

714
2520

;
14280
13104

Ny(G)

340
1680
5040

83160
10080
10080
166320
3360

5040
201

322560
312480

Ns(@G)

1249920

2499840

4999680
4999680

For p = 3 holds the relationship Np»(G) = (N (G)). For p = 4,6, the corre-
sponding numbers (N, (G)) (p = 4, 6) are given in Table 3 (see also [11]).

Table 3

G

III
IV

v

VI
VIII
X

XIT
XIIT
XIV
AVI
XVII
XIX
XX
XNXI
XXII
XXIIT
XXXI
13s.5.
1335.7.

—

N1(G))

[ox}

et o e Y B O ket QO e DD 00 W S G0
£ oo

= b
o b

(N2(G))

16
6
22
12
60
4
156
96
84
300
40

24

54
168
1
504
432

(N5(G))
56

112
336

2856
672
672

5712
224

336
1344

10752
10080

(Na(@))

40320

80640

161280
161280
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In Table 4 is given the distribution of 316 p-generating symmorphic space

groups according to the AC-isomorphism equivalence classes.

Table 4

G p=3 p=4 p==6 p=4,6 p=3,4,6
I 1 1
III 1 2 3 5 6
v 1 4 3 7 8
v 1 1 1 2
VI 5 15 15 30 35
VIIT 1 2 3 3
X 1 1 i
XII 1 2 3 5 6
XIIT 3 15 22 37 40
X1V 1 4 3 7 8
XVI 1 2 3 3
XVII 1 1 i
XIX 11 17 39 56 67
XX 2 19 25 44 46
XXI 6 2 6 8 14
XXII 6 ) 8 8
XXIIT 8 18 26 26
XXIV 13 3 13 16 20
XXV 1 1
XXXI 1 1 2 2
13s.5. 2 4 6 6
13s.7. 1 2 3 3

47 104 165 269 316

Multiplying the number of the groups belonging to a certain AC-isomorphism
equivalence class by the corresponding number N, (G) or (N,,,(G)), and adding the
products obtained, we have the numbers N, and (N,;) of the symmorphic space

groups of (p, 2")-symetry (p = 3,4, 6).

Ni=1653) 4+ 7764 4 1203(®) = 2144
(N1)= 165® 4 672(%) + 1038(9) = 1875

No= 10383 4+ 8227(%) 4 13587(6) = 22852
(N2)=1038C) + 62119 4 10473(5) = 17764

N3= 10473 4 112133 + 199311(5) = 321917
(N3)= 10473 + 68656(*) + 126000(®) = 205129

Na= 126000 + 16749600 + 3139920(6) = 4940880
(Ng)= 126000 + 6451204 + 1249920(8) = 2021040

Ns= 124992003 4 19998720(*) 4 38747520(8) = 59996160
(Ns)= 1249920 = 1249920
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