Let $C_\alpha(X,Y)$ be the set of all continuous functions from $X$ into $Y$ endowed with the set-open topology where $alpha$ is a hereditarily closed, compact network on $X$. We obtain that: \begin{align*} ext{(i)} \quad &si(f,c_lpha(X,Y))eq wlpha c(X)\cdot up_{Aılpha}(si(f(a),Y))\cdotup_{Aılpha}(w(f(A))) ext{(ii)} \quad &si(f,c_lpha(X,Y))eq wlpha c(X)\cdot psw_e(f(X),Y). \end{align*}