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THE SPECTRAL FUNCTION OF VARIOUS DIFFERENTIAL
OPERATOLRS AND ITS ASYMPTOTICAL BEHAVIOUR

ZORAN KADELBURG

ABSTRACT. [In this paper we shall consider one iype of spectral functions
which is characteristic for discrele operators, given by ordinary differential oper-
ators on bounded segments.

1. One of the important problems in the spectral theory of differential opera-
tors is the investigation of their spectral functions and, particularly, the asymptotic
behaviour of such functions for large values of the spectral parameter. Here, by
"spectral function” one can mean various functions, all closely related with the
spectral resolution of the given operator. In this paper we shall consider one type of
spectral functions which is characteristic for discrete operators, given by ordinary
differential operators on bounded segments.

As a simple example, consider the Sturm-Liouville operator
(1) =y +a(@)y= Ay, ¥(0) - hy(0) =y (v) + Hy(m),

where ¢ is a real, sufficiently smooth, function and b, H € R. For such an operator
the spectral function is given by

where A, are the eigenvalues, y, the corresponding eigenfunctions of the operator
(1), chosen in such a way that y,(0) = 1 and a, = [ y2(2)dz.The problem of the
investigation of the asymptotic behaviour of p(A) when A — co was considered for
a long time. One of the simplest answer was given by V.A.Sadovnitchii in [7] by
proving the following,.

THEOREM 1 If § is the spectral function of the operator of the {ype (1), where the
Junction g is replaced by §, then

) ) = p(X) +0(1), A oo.
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|
The proof of the theorem was based on calculating sums of the type ‘

(3) > [27Bn — Am(n, Ba)] = B,

n
where z, are zeros of a certain entire function f(z), m is a positive integer, 5,
certain ”weights” and A,,(n, 8,) completely determined numbers which enable the
convergence of the series. Here the function f(z) is closely related with the given op- ‘
erator and its structure is strictly determined. When the operator (1) is concerned, |
the formula (3) gives ‘

1 9. 1
4 ;(a—n - ;) =0 |
and the formula (2) follows easily.

A natural question is whether similar results can be derived for other types
of differential boundary value problems. Recall that even in the Tamarkin’s paper
[8] a general variant of such problem was given, where generalizations were: 1° the ' ‘
differential expression could be of higher order; 2° the spectral parameter could
be contained in boundary conditions; 3° boundary conditions could contain some
integrals; 4° the differential expression could polynomially depend on the spectral
parameter. Several examples illustrating the cases 1° —4°, as well as some problems
of different types, were considered and the corresponding answer to our question
was given in the papers [1]-[5]. Here we shall discuss only some of the characteristic
problems which arose during the investigation of these operators.

2, One of the main problems is the way of choosing the eigenfunctions v,
which define the coeflicients @, and the function p. Such a problem arises even for
the Sturm-Liouvile operator, but with boundary conditions different from (1):

(5) —y' +a(zly=2y, y0)=y(x)=0

Here one cannot chose y, so that y,(0) = 1. If they are chosen by the conditions
y;,(0) = 1, however, it is shown in [2] that the formula (2) is not valid anymore in
the general case. Only the following weaker formulation is possible:

THEOREM 2 If p and p are spectral functions of the operators of the type (5) ( the
Jormer with the funclion ¢ and the latter with § ) and if ¢(0) = 4(0), ¢'(0) = §'(0),
then the formula (2) is valid.

Namely, instead of (4) one can get the formula

Z [i - -2—n2 + lq(O) = —%Q"(O) - LQ’(O)-

~lom T T 2m

Nevertheless, it is proved that the formula (2) is possible without further assump-
tions on ¢ and § in the case when the choice of the eigenfunctions y, is such that it
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depends on the ”"potential”. For example, if we put y/,(0) = s,,, s2 = A, we obtain
the formula (4) and so also (2). _

"The similar effect appears in the cases considered in [1]-[5]. The main problem
there is to find the way of choosing y,’s which can ensure obtaining the formula

(2).

3. When nonselfadjoint differential or functional-differential boundary value
problems are concerned, the basic question is to define the function p() which would
naturally bare the name ”spectral function”. The question is answered depending
on the known formulas for the corresponding spectral resolutions. As an example,
consider the Regge operator

-y +q(z)y =5y,  y(0) =y'(a) +isy(a) =0,

where ¢ is a complex function, g(z) ~ ¢y(a — z)* (z — a—0), g > 0, ey # 0. In
the paper [6] it was shown that the eigenvalues s, behave like

2
Sn:H+’-’:#+
a 2a

In |n| + O(1) (n — o0},

and that the functions f and g, satisfying certain conditions, can be written in the
form f(z) = 3°7_ cayn(z), 9(z) = 3°°°_ casnyn (), where

o _ L[l (@) + 9()/sn]yn (x) dz — iya(a)f(a)/5n
"9 foa yi(z)dz —iyl(a)/2s, ’

5o, it is possible to define the spectral function by

p(A) = Z QL, anz-/oayg(m)d;r—iy"—(ﬂl.

2s
|Resn|<A n 7

For such a function, the theorems of the type 1 and 2 are proved in [1].

Let us mention that the corresponding construction can sometimes be made
even when formulas for spectral resolution are unknown. E. g. it was done in [1] for
the case of the Orr-Sommerfeld equation, using some considerations in Tamarkin’s
work [8]. (The corresponding resolution was proved later).

4. As a special problem when calculating the sums of the type (3) for
differential operators of various kinds, one have to consider the shape of the indicator
diagram of corresponding characteristic function. Namely, in the example given in
[7], such a diagram was a polygon without ”spare” pints on its edges. When some
other operators are concerned, this may not be the case. As an example consider
the problem

(6) i@y =dv, w0 = [ " @t i, wr =0,
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where ¢ and p are real functions, pu(z) > 0, Jo plz)de = 1, [ a(z)dz = Q.
Here (see[3]) the indicator diagram is {ir,0, —ir} which causes modifications of
the method of calculating the sums that are needed. These calculations are too
long to be given here. As a final result, instead of (4) one gets

} - E,

1 1 1 iy *
E {-—“——(4RQ+D1)——[4-<H+—> + Do
= @y T 2

where the constants Dy, Dy and E depend on the values of ¢ and pin 0 and . The
similar method is used in the papers [1], [3] and [5].
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