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M-HARMONIC BLOCH SPACE AND BMQO IN THE
BERGMAN METRIC ON THE UNIT BALL

MiroLJUB JEVTIC

ApsTracT. In (2] ¢ was shown that many characterizalions of analytic Bloch
functions also characterize M—harmonic Bloch funclions. In this poper we give
several additional characterizations of M—harmonic Bloch functions on the unit

ball B of C™.

1. Introduction. In this paper we continue the investigation of AM—harmonic
Bloch space began in [2], where it was shown that many characterizations of analytic
Bloch functions also characterize AMM—harmonic Bloch functions.

The main purpose of this paper is to give several additional characterizations
of M—harmonic Bloch functions on the unit ball B of C7.

As in [5], we say that a function u € C?(B) is M—harmonic in B, f € M,
if Au(z) = 0 for every z € B. The operator A is the invariant Laplacian defined
by Au(z) = A(uo . )(0), z € B, where A is the ordinary Laplacian and ¢, the
standard automorphizm of B (. € Aut(3)) taking 0 to z ( see [5] ).

For f € CY(B),Df = ((?Tf,, Bﬁzji) denotes the complex gradient ol [,
1 72
Nf= a—f,...,i JZp = Rogp—1 +ixap,k = 1,2,...,n, denotes the real gra-
dzq OTan
dient of f.

For f € CY(B) let Df(z) = D(f o ¢,)(0), z € B, and Vf(z) = V(f o )(0),
z € B, be the invariant complex gradient of f and the invariant real gradient of f
respectively. )
We say that f € C!'(B) is a Bloch function, f € B, if || f||s = sup [V [f(2)] < .
zeDR

Let 3(-,-) be a Bergman metric on B. By definition ([3],p.45) @ is the "inte-
grated form” of the infinitesimal metric

.

G = (gi5(2)) 5 (ilogﬂ’(x, z)) ,where K(z,w) = (1 - (z, w))_”'_l

1s the Bergman reproducing kernel for B.
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Let || - ||s denote the Lipschitz norm; i.e. if f is a continuous function on B.
Then ||f{]g is the smallest A > 0 for which |f(z) — f(w)| < AB(z,w), z,w € B.

We say that f € Lip 8 if ||f]|s < co.

For f € C'(B), define

0= {(I (DF(z), @) [ + |{D](2), @

BYPPR) 1fllg = sup Q4 (2)
(G.w, w) B e Ire

We define @ to be the space of functions f € C1(B) such that ||f||g < oo.

For f € C(B), we define Osc(f)(z) = sup{ |f(z) — f(w)| : w € B(z,1)}, where
E(z,r)={weB : fz,w)<r},0< r < oo.

We say that f € C(B) is of bounded oscillation, f € BO, if | fllose =
= sup Osc(f)(z) < oo.

Let |E(z,7)| = v(E(z,r)), where v is a normalized Lebesgue measure on B.
For fixed r > 0 and [ € L%(B), we define

s 1
e =gam | Fwdw) e

E(z,r)
1/2

MO.(f)(z) = W;TN / |f(w) — (z )| dv(w)
E(z,r)

We say f € L*(B) is in BMO, if ||f||amo, = sup, MO.(f)(z) < oo, and f is
in BMO? if

1/2
1 Gl N
2eB | |E(z,7)] _/ 17 (w) = F(2)|* dv(w) < oo.

lfllBaro; = sup
E(z,r)
Given f € L*(B), let

1/2
MO(f)() = ( / j /(W) — )P (u)FIK()Pdu()dv(m) , z€B,

where K,(u) = K(z,2) 2K (u, z).
We say f € L*(B) is in BMO if ||f||lpmo = sup,cy MO(f)(2) < co.
THEOREM. For f € M N L*(B), the following are equivalent:
(i) feB, (ii) feq,
(i)  f€Lipg, (iv)  feBo,
(v) feBMO, (vi) f€BMO, forall r>0,
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(vii) f€BMO, forsomer >0, (viii) fEBMOY forall v >0,
(ix) feBMQO! for somer > 0.

For holomorphic functions the theorem was proved in [6] and [1].
We don’t need in this note the characterizations of M—harmonic Bloch func-
tions obtained in [2], but we state them for a reader’s convenience.

TueoreM J.P. Lel f € M. Then the following are equivalent:

@) feB,

(i) sup (AUF)W < o0,

i) sup /T= TP (IDJ(” ~ RS +IDFP - IRF) < oo,
(iv) Sup(l — 2V f(2)| < o,

v) SUD (1= 1P (IRf ()| + |RF(2)]) < o0,

n
. o ad
Here, as usual, R denotes the radial derivative R = szc'?_ :
7
F=1 J

2. Proof of Theorem. To show (i) = (ii) we need the following lemma.

Lema 2.1. Lel f € CYB). Then Qs(¢(2)) = Qrop(2),z € B, for all ¢ €
Aut(B).

Proor. Notice that each ¢ € Aut(B) is an isometry on B in the Bergman
metric. This statement is expressed by the following equation:

(G,P(z).]z (p)w, Jz(gﬁ)'w> =(G,w,w) ,forallz€ B; we C"; ¢ € Aut(B).

Here J. (@) denotes the complex Jacobian matrix of ¢ at z.
Thus, since J; (i) is an invertible matrix, we have Qfo,(2) =

{u (D(f o @)(2), @) | + | (D(f o 9)(2), ®) 12)1/2}

=0 T
= sup )w ) 2+ 1{D(f 0 9)(2), @ >|)”'2}
w0

@(Z)Jz(cp)w, J2(p)w

= >
{ D(f o 0)(2), Un (@)} 1w>| + [(D(F 0 9)(2), T @)) 1“w>|2>1/2

= sup
s (Coiyw,w)
(D 2 =\ 1231/2
:31;% £z | + [(Df(2),5) P) }:Qf(tp(z))_

"\/ Gro(a)w, W)
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(i) = (ii).  Since o? = Ii?jl (Gow,w) > 0, it follows from the definition of
Qf(z) that
1 . = )
Qrop:(0) < = (ID(F 0 2:)OF + D 0 ) O)* =
1 ~ - 1/2 1 o
=5 (IBSGP +IDFP) ™ = =95

and so, by Lemma 2.1,
|If1le = sup Qs (2) = sup Q4 (¢:(0)) = sup Qop.(0) < Csup |Vf(2)| = C||[||s-
2cRB 2EDB zeB 2€B

Here and elsewhere constants are denoted by C which may indicate a different
constant from one occurrence to the next.
(i1) =-(iii) . Fix z,w € B. Let v : [0,1] — B be a geodesic (in the Bergman
metric) with ¥(0) = z and 7(1) = w. Then

1) - s = | [ 6@y a| < [ (o). 7D) + DTy 70) | @
< [ ({pre) @Y+ [(pFa0), 7BY]) @
< V2 [ Qs (Gt @, 7 @) dt < VAl a8, ).

Thus, [|flls < V2lIfle-
(iii) = (iv) follows from the following characterization of the class BO.

Lemma 2.2 ([1], p. 329) For a continuous funclion f on B, the following are
equivalent:

(1) f isin BO,

(2) there ts a constant C'=Cy >0 with  |f(z) — f(w)] £ C+ CH(z,w),
forall =z, w in B,

(3) sgg [lfow: — f(2)llzemy < o0 forall p>0.

(iv)=-(v) follows from the identity ||f o @, — f(2)||z2m) = MO(f)(2) and
Lemma 2.2.
(v)=(vi). Since |E(z,7r)| = [1 = (w,z) "t =2 (1 — ||, w € E(z,7), we
have
Cr 2 v 2
MO(f)}(2)? > —=——— [ f |f(u) — F()|* du(u) dv(v) = 2C, MO, (f)(2)

|E(Z, r)lg
E(z,r) B(2,r)
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The desired result follows at once.
Lemma 2.3.([1], p. 331). For any fized r, BMO, is contained in BMO. More-
over, there is a constant Cy, such that for all f in BM Oy, ||flisaro < Crllfliaro, -
Hence, (v)<(vi)e(vii).
LevMa 2.4, For any fived v, MNBMO, = MNBMO:.
Proor. For f € BMQ?, we find, by use of ihe Cauchy-Schwarz inequality,

that
| 1/2
MOL(f)(2) = ‘ZI_E(}W j f If(e) — f@)Pavu)dv(s) | <
‘ ' E(z,r) E(z,r)
| 12
| 1 ;
‘ <Va G, / | 1f (w) — f(=)Pdo()

Thus, BMO; C BMO.,.
Conversely, let f € M N BMO,. Then

|
\
‘ f(z) = f h(p:(w))f(w)dr(w), z€B,
B
where h is a radial function which belongs to C°*(B) and with the compact support
such that
|

fh(w) dr(w)=1 and dr(z)=(1—|z]) " dv(2).
B

Since T 1s M —invariant, we have /h(epz (w))dr{w) =1, z € B.
B

Thus,
1£G) = Fe,)l = | [ e (@) ) dr(e) - j F(z, Yz () dr(w)
B B
< [ Inpa(DIlf(w) - £z, dr(w).
B

By a suitable choice of function h we get

" G - )
11(2) = Fe ) < Ty ] \F() — f(z,7) | du(w).

E(z,r)




88 M. Jevtié

Using this we find that
1/2

1 _ ;
Fllsseoz =sup | sy [ 1) = S ()

E(z,r)
< |fllsaro, + sup 17(2) = f(z,7)| < C||f||Bato., -

As a consequence, we have (vi)<(vil)< (viii)<(ix).
To finish the proof of Theorem it remains to show that (ix)=(i).
Since f is M—harmonic, by Theorem 2.1 ([4]), we have

V()< C / |f(w)|? dr(w), and hence
E(z,r)

F5(2)2 < C / |f(w)f(z)|2dr(w)§ﬁ(%r)[ f f(w) — F(2)|? du(w).

E(z,r) E(z,r)

Therefore, || f||s < C||fl|lzaro:.
This finishes the proof of Theorem.

Added in proof. After T had submitted the paper for publication I realized that
K. Hahn and E. Yaussfi also had obtained some of the equivalences in (i) through
(ix) in the paper:

M—Harmonic Besov p—spaces and Hankel Operators in the Bergman Space
on the Ball in C”, Manuscripta Math., 71(1991), 67-81.
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