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BOUNDARY SINGULARITIES OF NORMAL SET
MAPPINGS UNDER GENERAL BOUNDARY APPROACH

V. 1. GAVRILOV, Z. S. OGANESJAN

ABSTRACT. Some types of singularities generated by cluster sefs of normel
sel-mappings for general boundary approach are investigaied. Lindelof and Meier
types theorems are proved.

1. Preliminaries

Let D denote the unit disc |z| < 1 in the complex z—plane, I" be the circumfer-
ence |z| = 1 and let dp(z) = (1—|z|2)~?|dz]| be the linear element of hyperbolic met-
ric in D. We define the notion of o-porous set introduced by E. P. DolBenco [2]. For
aset £ on T, apoint ( = ' of T and areal € > 0, we denote by *((, £, €) the length
of the largest open arc which belongs to the arc v, c = {£ = €™ : [p—0] < ¢} and
does not intersect K ( if there is no such an arc, we put (¢, E,€¢) = 0 ). The point
¢ = €' is called a point of porousity of the set E if

r({, ) = limsup LC’;Ei) >0

e—0

The set I is called a porous set on T if every point of E is a point of porousity
for £. A set on I' is called a o- porous set if it is the union of not more than a
countable collection of porous sets.

It follows from the definition, thal any porous set is nowhere dense on I,
and therefore, any o-porous set is a set of first Baire category on T'. Moreover,
by the definition, no point of porousity of a measurable set £ on T' can be the
Lebesgue density point of E. Since, by the Lebesgue theorem, almost all points
of a measurable set are its density points, it follows, that any porous set and any
o-porous set is of linear Lebesque measure zero on I'. The converse assertions are
not, in general, true ( for a discussion on the subject, see, for instance, the papers
of N. Yanagihara (8] and D. C. Rung [5] ).
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2. The geometry of boundary paths in the unit dise

In this paragraph we consider the geometry of boundary paths in D for a
general approach function. Following the paper of D. C. Rung [5], a real nonnegative
continuous function h(z) defined on a segment I, = [-1,1],0 < I < 7, of the real
axes is called an approach function if h(z) is the even function on I, which is strictly

increasing for x > 0 and k(0) = 0, h(£!) = 1. We put hs(z) = min {M, 1} for
a

an arbitrary a > 0.
For a fixed point ¢ = ¢'® on I and for arbitrary b > a > 0, we consider in D a
boundary hi-curve

La(¢,a)={[1 —ha(p—0)]e"* : (p—0) eI },
which passes through the point z = 0 and touches I' at the point ¢, and two sets
RAL(,a,b)={re? €D :1—h(p—-0) <r<1-— hi(p—0);0 < <O+1}

LAWC,a,b) = {re® € D:1—halp—0) <r <1—hy(p—0);—1+0 <o <0},

which are called a right h-angle and a left h-angle with the vertex at the point ¢,
respectively. For the sake of simplicity, we use the symbol Ay(¢, a,b), or simply,
Ag(C) for aright or a left h-angle, and the symbol L () for an arbitrary h-curve at
(. We note that an h-angle Aj({, ¢,b) is a subset of D which is contained between
the h-curves Ly ((, a) and Ly((, B).

We denote p(z; La((, ¢)) = inf{ p(z,w); w € Ly({,a)} for a point z € D and
for an h-curve Lj((, @), where p{z, w) denotes the hyperbolic distance between the
points z and w in D.

Lemma 1. ( U. U. Stayanarayana, W. L. Weiss [6] ) If an approach function
h(x) is convex down on Iy, then for any Ly((,a) and Ly ((,b)

Ja - B] + |a — ]

. ) o= . 1
(1) zlf_l:l; P(za Lh(C; b)) - LI'E[E p("'th(CJ 0‘.)) = Elog |CL + bl - la s b;

z€Ls((.a) z€Lx((,B)

3. Cluster sets and boundary singularities of arbitrary set-mappings

Let X and Y be arbitrary topological spaces. For an element p in X, we denote
by U, the system of all neighborhoods of the point p in X, and for a set 4 in X
(or Ain Y ), the symbol A stands for the closure of the set A in X (orin ¥ ).
We denote by P(Y') the collection of all subsets of ¥ including the empty set 0.

Consider a non-empty set A in X and a set-mapping S : A — P(Y). For any
subset Ay of A, we put S(Ar) = Upca,S(p); S(0) = 0. Let @ be a subset of A and
let a point p belongs to the closure Q). The cluster set C(S, p, Q) of the set-mapping
S at the point p along the set @ is defined as the intersection

C(S,p.Q)=(5UNQ)
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taken over all neighborhoods U in 14,.

Let now X be the complex z-plane C, A be the unit disc D : |2/ < 11in C and
let T : |z] = 1. A topological space ¥ is assumed to be compact. We introduce some
sets of boundary singularities for an arbitrary set-mapping S : D — P(Y). Denote
by Kp(S) the set of all points ¢ on I’ at which C (5,¢,AL({)) = C (S, ¢, A%(Q)) for
any two h-angles A} (¢) and AZ(¢). A point ¢ of Kj(S) belongs to the set Cy(S)
il C(S,¢, An(()) = C(5,(, D), and a point ¢ of Cx(S) belongs to the set I,(S) if
C(5,¢(,D)=Y.

A point ¢ on T is said to belong to the set Ly(S) if C(S,¢,Li(¢) =
= C(5,¢(,L(()) # Y for any two h-curves L#(¢) and L3(¢). A point ¢ of Ly(S)
belongs to the set M (S) if C(S,¢, Lu(S)) = C(S,¢(,D) # Y, and a point ( on T
belongs to the set I} (S) if C(8,¢, La(¢)) = Y for any h-curve Li(¢). At a point
¢ of If (S), we have C(S5,¢,Lu(Q)) = Y = C(5,¢, An(0)) = C(S,¢, D) for any
h-curve Ly (¢) and any h-angle Ay (¢), and therefore, I} (S) C I (9).

We note also that I:"(S) N M, (S) = I;'(S) N Ly(S) = 0.

TueoreM 1. ( Z. S. Oganesjan [4] )  Let Y be a compact metric space. If an
approach function h(z) is conver down on I , then for an arbilrary set-mapping
S : D — P(Y) the sel T'\ Cy(S) is an Fy-set of first Baire category on T.

THEOREM 2. ( Z. S. Oganesjan [4] ) LetY be a compact meiric space. Let an
approach function h(z) be convex down on Iy, and ils inverse function u(l) = Bt ()
satisfies the condilion

/ ;
(2) limint £ 197)

0
t—0 p(t) -

Jor any o > 1, where pi' (1) denotes the derivative of u(l) at any point t at which
the derivalive exvisis. Then for an arbitrary set-mapping S : D — P(Y) the set
'\ Kx(S) is a o-porous sel of type G5, on T'.

4. Cluster scts of normal set-mappings

Let Y = (Y, d) be a metric space with the metric d. For an element y of ¥ and
a set Q in Y, we denote, as usually, d(y; Q) = inf{d(y,¥') : ¥ €Q}. Let ¢ >0
be given and N(@Q;¢) denote the e-neighborhood of the set @, that is, AV((Q; € =
={yeY : dyQ) <€}

DEFINITION. ( S. Yamashita [7] ) A sel-mapping S : D — P(Y) is said to
be normal if for any € > 0 there exists a number § = 6(¢),6 > 0 such that for
any points z; and zy in D satisfying the condition p(z;,2;) < & the inclusions

N (S(21);€) D S(z2) and NV (S(22);¢) D S(21) hold.

THEOREM 3. Let Y = (Y, d) be a compact melric space. Let an approach func-
lion h(z) be a conver down on I,. Then for any normal set-mapping S : D — P(Y)
and any h-curve Ly((, a), the assertion

(3) C(S,C,Lh(g,ﬂ)) = ﬂC(S,C,Ah(C))
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holds, where the inlersection is taken over all h-angles Ap(¢) containing the h-curve
Lh(Cl a‘)‘

PRroOF. The inclusion

(4) C(SICsLh(C:a)) o mC(SIC:Ah(C))

is true for an arbitrary set-mapping S : D — P(Y) by the definition of cluster sets
in it.
We need to prove the converse inclusion

(5) O(S:C:Lh(qra)) - nG(S:C)Ah(C))

Suppose, that (5) is not true. Then, there exists an h-curve Lj((, a),a > 0,
such that the inclusion

(6) C(S)C) Lh(C! (1)) C ﬂ?T?:IC(S, g: Ah(C: a— 1/m! a+ l/m))

is strict.

Hence, there exists an element y in Y such that y belongs to C(S,{, Ap({,a —
1/m,a+ 1/m)) for any m € N, and y does not belong to C (S,(, Lx(¢,a)). Since
the set C(S5,¢, Lr((, a)) is closed, then by (6), there exists an open ball B(y,r) =
{¢y €Y 1 d(y,y) <r},r>0,inY with the compact closure B(y,») and such
that

(7) Bly,7) NC(S,¢, Lu(¢,a)) = 0

By the choice of the element y, each angle Ay({,a — 1/m,a+ 1/m),m € N,
contains a sequence ofpoints {z,(,m)} such that }im z(m) = ( and lim S(z(m))(n) =

y, where S(z (m))(n) = 4™ denotes an element of the set S(zn )) inY.
For fixed m,n € N, we denote by 2™ the point on Lp({,a) at which

(z(m}, ,ﬁm)) = (m} i Ln(¢,a)). By Lemma 1, for a fixed m € N, we have
(m) (m) a -+ 1/?11
(8) Jim p(z™, 2™ = a—ijm @ MEXN

If we consider the diagonal sequence {z,(ﬁk)} and {ZIE_I"-)}, we get from (8) that

(9) hm p(z (k), Ef(ck}) =1

The sequence {z;(ck)} tends to point ¢ and the corresponding seqﬁence {y,(ck)},
g;(k_k) — S(z](ck))(k),fc € N, has klim ygk) = y. Since the set-mapping S is normal

it follows from (9), that jcIim d (S(z(k) S(2 (k)) 0. If we denote S(z (L) =

y 000
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gfj’), k € N, we obtain that k]im g,(c’“) = y. Since Eg” € Lx(¢,a), k € N, we conclude

that y € C(S,(, Lu(¢,a)). The latter contradicts to (7), and, hence, the inclusion
(5) is proved.
Combining (4) and (5), we get (3), and Theorem 3 is proved.

COROLLARY 1. LetY = (Y,d) be a compact melric space , and let an approach
function h(z) be conver down on In. Then for any normal sel-mapping S : D —
P(Y') the assertion C(S,¢, La(¢)) = C(S,¢, Ax(C)) holds at any point { of the sel
Ky (S) for any h-curve Ly(C) and any h-angle Ay(C). In particular, I(S) = [;'(S).

5. The Meier and Lindel6f type theorems for normal set-mappings

THEOREM 4. ( The Meier type theorem ) Lel Y be a compact meiric space.
If an approach function h(z) is conver down on I, then for the arbitrary normal
set-mapping S : D — P(Y) the following assertions holds:

(i)  Cu(S)= Mp(S)ULF(S) and (i) T =M(S)UL}IS)UE,

where £ is an I, set of first Baire caiegory on T'.

THEOREM 5. ( The Lindelsf type theorem ) LetY be a compact metric space,
and let a set-mapping S : D — P(Y) be normal. If an approach function h(z) is
conver down on Iy, then the following assertion holds:

(i) Kn(8) = La(S) UL (S).

If, in addition, the approach function h(x) satisfies the condition (2) in Theorem
2, then (ii) [ = Ly(S)U L (S)UE, where E is a g-porous set of type G, on T

Proof of Theorem 4.  To show the validity of the assertion (i), we must
prove only the inclusion Ci(S) C My(S) U I}(S), since the inverse inclusion is
valid by the definition of the sets. Consider a point ¢ of Cy(S). By Corollary 1,
C(5,¢, Lu(¢, @) = C(S,¢, D) for any h-curve Ly(¢,a). So, if C(S,(,D) =Y, then
¢ belongs to I} (), and if C(S,{, D) # Y, then ¢ belongs to My(S).

The assertion (ii) follows from (i) and Theorem 1.

Proof of Theorem 5. Consider a point ¢ of the set K3(S5). By Corollary
L, C(S,¢, Ln(()) = C(S,¢, An(C)) for any h-curve Ly({) and any h-angle An(¢). If
C(5,¢,An(C)) # Y, then { belongs to Ly (S). If C(S,(,A(¢)) =Y, then ¢ belongs
to In(S) = If (S). This proves the inclusion Kx(S) C Lx(S) U IH(S).

To prove the converse inclusion, we use arguments analogous to those in the
proof of Theorem 3. It was noted above, that I (S) = I4(S) C Kn(S). Consider

a point ¢ of the set L;(S) and suppose there exists an h-angle Ay(() such that -

C(5,¢, An(C)) # C(S,¢, Lr(()) for any h-curve Ly(¢). Then, we can choose an
element y in C(S,¢, Ax(¢)) which does not belong to C(S,(,Ly(¢)). Denote by
{zn} a sequence of points in Ap(¢) for which lim z, = ¢, and lim y, = y, where
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Yn = S(zn)(n),n € N ( cf, the proof of Theorem 3 ). The sequence {z,} contains
a subsequence {z,, } such that klim p(zn,; Ln(C, a)) = 0 for some h-curve Ly (C, a)

contained in Ap(()). The contradiction to the assumption follows now in the same
way as in the proof of Theorem 3.

ReEMARK 1. We note that the assertions of Theorems 4 and 5 remain valid
for a locally compact metric space Y.

REMARK 2. Theorem 4 is a generalization to set-mappings of improved
version of Meier s theorem for meromorphic functions which is obtained by V. I.
Gavrilov and A. N. Kanatnikov [2]. In the special case h(z) = z, Theorem 4
improves a result of S. Yamashita [7]. Theorem b is a generalization to set-mappings
of the Lindelof type theorem for meromorphic functions which is proved by Abdu
Al’Rahman Hassan and V. I. Gavrilov [1].
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