FILOMAT-20, Niš, September 26-28, 1991

BOUNDARY SINGULARITIES OF NORMAL SET MAPPINGS UNDER GENERAL BOUNDARY APPROACH

V. I. GAVRILOV, Ž. S. OGANESJAN

ABSTRACT. Some types of singularities generated by cluster sets of normal set-mappings for general boundary approach are investigated. Lindelöf and Meier types theorems are proved.

1. Preliminaries

Let D denote the unit disc |z| < 1 in the complex z-plane, Γ be the circumference |z| = 1 and let $d\rho(z) = (1-|z|^2)^{-1}|dz|$ be the linear element of hyperbolic metric in D. We define the notion of σ -porous set introduced by E. P. Dolßenco [2]. For a set E on Γ , a point $\zeta = e^{i\theta}$ of Γ and a real $\epsilon > 0$, we denote by $\Gamma(\zeta, E, \epsilon)$ the length of the largest open arc which belongs to the arc $\gamma_{\zeta,\epsilon} = \{\xi = e^{i\varphi} : |\varphi - \theta| < \epsilon\}$ and does not intersect E (if there is no such an arc, we put $\Gamma(\zeta, E, \epsilon) = 0$). The point $\zeta = e^{i\theta}$ is called a point of porousity of the set E if

$$r(\zeta, E) = \limsup_{\epsilon \to 0} \frac{r(\zeta, E, \epsilon)}{\epsilon} > 0$$
.

The set E is called a porous set on Γ if every point of E is a point of porousity for E. A set on Γ is called a σ - porous set if it is the union of not more than a countable collection of porous sets.

It follows from the definition, that any porous set is nowhere dense on Γ , and therefore, any σ -porous set is a set of first Baire category on Γ . Moreover, by the definition, no point of porousity of a measurable set E on Γ can be the Lebesgue density point of E. Since, by the Lebesgue theorem, almost all points of a measurable set are its density points, it follows, that any porous set and any σ -porous set is of linear Lebesque measure zero on Γ . The converse assertions are not, in general, true (for a discussion on the subject, see, for instance, the papers of N. Yanagihara [8] and D. C. Rung [5]).

2. The geometry of boundary paths in the unit disc

In this paragraph we consider the geometry of boundary paths in D for a general approach function. Following the paper of D. C. Rung [5], a real nonnegative continuous function h(x) defined on a segment $I_h = [-l, l], 0 < l \le \pi$, of the real axes is called an approach function if h(x) is the even function on I_h which is strictly increasing for $x \ge 0$ and $h(0) = 0, h(\pm l) = 1$. We put $h_a(x) = \min\left\{\frac{h(x)}{a}, 1\right\}$ for an arbitrary a > 0.

For a fixed point $\zeta = e^{i\theta}$ on Γ and for arbitrary b > a > 0, we consider in D a boundary h-curve

$$L_h(\zeta, a) = \{ [1 - h_a(\varphi - \theta)]e^{i\varphi} : (\varphi - \theta) \in I_h \},$$

which passes through the point z=0 and touches Γ at the point ζ , and two sets

$$R\Delta_h(\zeta, a, b) = \left\{ re^{i\varphi} \in D : 1 - h_a(\varphi - \theta) < r < 1 - h_b(\varphi - \theta); \theta \le \varphi \le \theta + l \right\}$$

$$L\Delta_h(\zeta,a,b) = \left\{ re^{i\varphi} \in D : 1 - h_a(\varphi - \theta) < r < 1 - h_b(\varphi - \theta); -l + \theta \le \varphi \le \theta \right\},$$

which are called a right h-angle and a left h-angle with the vertex at the point ζ , respectively. For the sake of simplicity, we use the symbol $\Delta_h(\zeta, a, b)$, or simply, $\Delta_h(\zeta)$ for a right or a left h-angle, and the symbol $L_h(\zeta)$ for an arbitrary h-curve at ζ . We note that an h-angle $\Delta_h(\zeta, a, b)$ is a subset of D which is contained between the h-curves $L_h(\zeta, a)$ and $L_h(\zeta, b)$.

We denote $\rho(z; L_h(\zeta, a)) = \inf\{\rho(z, w); w \in L_h(\zeta, a)\}$ for a point $z \in D$ and for an h-curve $L_h(\zeta, a)$, where $\rho(z, w)$ denotes the hyperbolic distance between the points z and w in D.

LEMMA 1. (U. U. Stayanarayana, W. L. Weiss [6]) If an approach function h(x) is convex down on I_h , then for any $L_h(\zeta, a)$ and $L_h(\zeta, b)$

(1)
$$\lim_{\substack{z \to \zeta \\ z \in L_h(\zeta,a)}} \rho(z; L_h(\zeta,b)) = \lim_{\substack{z \to \zeta \\ z \in L_h(\zeta,b)}} \rho(z; L_h(\zeta,a)) = \frac{1}{2} \log \frac{|a+b| + |a-b|}{|a+b| - |a-b|}.$$

3. Cluster sets and boundary singularities of arbitrary set-mappings

Let X and Y be arbitrary topological spaces. For an element p in X, we denote by \mathcal{U}_p the system of all neighborhoods of the point p in X, and for a set A in X (or A in Y), the symbol \overline{A} stands for the closure of the set A in X (or in Y). We denote by P(Y) the collection of all subsets of Y including the empty set \emptyset .

Consider a non-empty set A in X and a set-mapping $S: A \to P(Y)$. For any subset A_I of A, we put $S(A_I) = \bigcup_{p \in A_I} S(p); S(\emptyset) = \emptyset$. Let Q be a subset of A and let a point p belongs to the closure \overline{Q} . The cluster set C(S, p, Q) of the set-mapping S at the point p along the set Q is defined as the intersection

$$C(S, p, Q) = \bigcap \overline{S(U \cap Q)}$$

taken over all neighborhoods U in \mathcal{U}_p .

Let now X be the complex z-plane C, A be the unit disc D:|z|<1 in C and let $\Gamma:|z|=1$. A topological space Y is assumed to be compact. We introduce some sets of boundary singularities for an arbitrary set-mapping $S:D\to P(Y)$. Denote by $K_h(S)$ the set of all points ζ on Γ at which $C\left(S,\zeta,\Delta_h^1(\zeta)\right)=C\left(S,\zeta,\Delta_h^2(\zeta)\right)$ for any two h-angles $\Delta_h^1(\zeta)$ and $\Delta_h^2(\zeta)$. A point ζ of $K_h(S)$ belongs to the set $C_h(S)$ if $C(S,\zeta,\Delta_h(\zeta))=C(S,\zeta,D)$, and a point ζ of $C_h(S)$ belongs to the set $C_h(S)$ if $C(S,\zeta,D)=Y$.

A point ζ on Γ is said to belong to the set $L_h(S)$ if $C(S,\zeta,L_h^1(\zeta))=$ = $C(S,\zeta,L_h^2(\zeta))\neq Y$ for any two h-curves $L_h^1(\zeta)$ and $L_h^2(\zeta)$. A point ζ of $L_h(S)$ belongs to the set $M_h(S)$ if $C(S,\zeta,L_h(S))=C(S,\zeta,D)\neq Y$, and a point ζ on Γ belongs to the set $I_h^+(S)$ if $C(S,\zeta,L_h(\zeta))=Y$ for any h-curve $L_h(\zeta)$. At a point ζ of $I_h^+(S)$, we have $C(S,\zeta,L_h(\zeta))=Y=C(S,\zeta,\Delta_h(\zeta))=C(S,\zeta,D)$ for any h-curve $L_h(\zeta)$ and any h-angle $\Delta_h(\zeta)$, and therefore, $I_h^+(S)\subset I_h(S)$.

We note also that $I_h^+(S) \cap M_h(S) = I_h^+(S) \cap L_h(S) = \emptyset$.

Theorem 1. (\check{Z} . S. Oganesjan [4]) Let Y be a compact metric space. If an approach function h(x) is convex down on I_h , then for an arbitrary set-mapping $S:D\to P(Y)$ the set $\Gamma\setminus C_h(S)$ is an F_σ -set of first Baire category on Γ .

Theorem 2. (\check{Z} . S. Oganesjan [4]) Let Y be a compact metric space. Let an approach function h(x) be convex down on I_h and its inverse function $\mu(t) = h^{-1}(x)$ satisfies the condition

(2)
$$\liminf_{t \to 0} \frac{\mu'(\alpha t)}{\mu'(t)} > 0$$

for any $\alpha > 1$, where $\mu'(t)$ denotes the derivative of $\mu(t)$ at any point t at which the derivative exists. Then for an arbitrary set-mapping $S: D \to P(Y)$ the set $\Gamma \setminus K_h(S)$ is a σ -porous set of type $G_{\delta\sigma}$ on Γ .

4. Cluster sets of normal set-mappings

Let Y=(Y,d) be a metric space with the metric d. For an element y of Y and a set Q in Y, we denote, as usually, $d(y;Q)=\inf\{d(y,y'):y'\in Q\}$. Let $\epsilon>0$ be given and $\mathcal{N}(Q;\epsilon)$ denote the ϵ -neighborhood of the set Q, that is, $\mathcal{N}(Q;\epsilon)=\{y\in Y:d(y;Q)<\epsilon\}$.

DEFINITION. (S. Yamashita [7]) A set-mapping $S:D\to P(Y)$ is said to be normal if for any $\epsilon>0$ there exists a number $\delta=\delta(\epsilon), \delta>0$ such that for any points z_1 and z_2 in D satisfying the condition $\rho(z_1,z_2)<\delta$ the inclusions $\mathcal{N}(S(z_1);\epsilon)\supset S(z_2)$ and $\mathcal{N}(S(z_2);\epsilon)\supset S(z_1)$ hold.

Theorem 3. Let Y=(Y,d) be a compact metric space. Let an approach function h(x) be a convex down on I_h . Then for any normal set-mapping $S:D\to P(Y)$ and any h-curve $L_h(\zeta,a)$, the assertion

(3)
$$C(S,\zeta,L_h(\zeta,a)) = \cap C(S,\zeta,\Delta_h(\zeta))$$

holds, where the intersection is taken over all h-angles $\Delta_h(\zeta)$ containing the h-curve $L_h(\zeta, a)$.

PROOF. The inclusion

(4)
$$C(S,\zeta,L_h(\zeta,a)) \subset \cap C(S,\zeta,\Delta_h(\zeta))$$

is true for an arbitrary set-mapping $S:D\to P(Y)$ by the definition of cluster sets in it.

We need to prove the converse inclusion

(5)
$$C(S,\zeta,L_h(\zeta,a)) \supset \cap C(S,\zeta,\Delta_h(\zeta)).$$

Suppose, that (5) is not true. Then, there exists an h-curve $L_h(\zeta, a), a > 0$, such that the inclusion

(6)
$$C(S,\zeta,L_h(\zeta,a)) \subset \bigcap_{m=1}^{\infty} C(S,\zeta,\Delta_h(\zeta,a-1/m,a+1/m))$$

is strict.

Hence, there exists an element y in Y such that y belongs to $C(S,\zeta,\Delta_h(\zeta,a-1/m,a+1/m))$ for any $m\in N$, and y does not belong to $C(S,\zeta,L_h(\zeta,a))$. Since the set $C(S,\zeta,L_h(\zeta,a))$ is closed, then by (6), there exists an open ball $B(y,r)=\{y'\in Y:d(y',y)< r\}$, r>0, in Y with the compact closure $\overline{B}(y,r)$ and such that

(7)
$$\overline{B}(y,r) \cap C(S,\zeta,L_h(\zeta,a)) = \emptyset$$

By the choice of the element y, each angle $\Delta_h(\zeta, a-1/m, a+1/m), m \in N$, contains a sequence of points $\{z_n^{(m)}\}$ such that $\lim_{n\to\infty} z_n^{(m)} = \zeta$ and $\lim_{n\to\infty} S(z_n^{(m)})(n) = y$, where $S(z_n^{(m)})(n) = y_n^{(m)}$ denotes an element of the set $S(z_n^{(m)})$ in Y.

For fixed $m, n \in N$, we denote by $\tilde{z}_n^{(m)}$ the point on $L_h(\zeta, a)$ at which $\rho(z_n^{(m)}, \tilde{z}_n^{(m)}) = \rho(z_n^{(m)}; L_h(\zeta, a))$. By Lemma 1, for a fixed $m \in N$, we have

(8)
$$\lim_{n \to \infty} \rho(z^{(m)}, \tilde{z}^{(m)}) = \frac{1}{2} \log \frac{a + 1/m}{a - 1/m} , \quad m \in \mathbb{N} .$$

If we consider the diagonal sequence $\{z_k^{(k)}\}$ and $\{\tilde{z}_k^{(k)}\}$, we get from (8) that

(9)
$$\lim_{k \to \infty} \rho(z_k^{(k)}, \tilde{z}_k^{(k)}) = 0 \quad .$$

The sequence $\{z_k^{(k)}\}$ tends to point ζ and the corresponding sequence $\{y_k^{(k)}\}$, $\check{y}_k^{(k)} = S(z_k^{(k)})(k), k \in \mathbb{N}$, has $\lim_{k \to \infty} y_k^{(k)} = y$. Since the set-mapping S is normal, it follows from (9), that $\lim_{k \to \infty} d\left(S(z_k^{(k)}; S(\tilde{z}_k^{(k)})) = 0$. If we denote $S(\tilde{z}_k^{(k)})(k) = 0$

 $\tilde{y}_k^{(k)}, k \in N$, we obtain that $\lim_{k \to \infty} \tilde{y}_k^{(k)} = y$. Since $\tilde{z}_k^{(k)} \in L_h(\zeta, a), k \in N$, we conclude that $y \in C(S, \zeta, L_h(\zeta, a))$. The latter contradicts to (7), and, hence, the inclusion (5) is proved.

Combining (4) and (5), we get (3), and Theorem 3 is proved.

COROLLARY 1. Let Y = (Y, d) be a compact metric space, and let an approach function h(x) be convex down on I_h . Then for any normal set-mapping $S: D \to P(Y)$ the assertion $C(S, \zeta, L_h(\zeta)) = C(S, \zeta, \Delta_h(\zeta))$ holds at any point ζ of the set $K_h(S)$ for any h-curve $L_h(\zeta)$ and any h-angle $\Delta_h(\zeta)$. In particular, $I_h(S) = I_h^+(S)$.

5. The Meier and Lindelöf type theorems for normal set-mappings

THEOREM 4. (The Meier type theorem) Let Y be a compact metric space. If an approach function h(x) is convex down on I_h , then for the arbitrary normal set-mapping $S:D\to P(Y)$ the following assertions holds:

(i)
$$C_h(S) = M_h(S) \cup I_h^+(S)$$
 and (ii) $\Gamma = M_h(S) \cup I_h^+(S) \cup E$,

where E is an F_{σ} set of first Baire category on Γ .

THEOREM 5. (The Lindelöf type theorem) Let Y be a compact metric space, and let a set-mapping $S: D \to P(Y)$ be normal. If an approach function h(x) is convex down on I_h , then the following assertion holds:

(i)
$$K_h(S) = L_h(S) \cup I_h^+(S)$$
.

If, in addition, the approach function h(x) satisfies the condition (2) in Theorem 2, then (ii) $\Gamma = L_h(S) \cup I_h^+(S) \cup E$, where E is a σ -porous set of type $G_{\delta\sigma}$ on Γ .

Proof of Theorem 4. To show the validity of the assertion (i), we must prove only the inclusion $C_h(S) \subset M_h(S) \cup I_h^+(S)$, since the inverse inclusion is valid by the definition of the sets. Consider a point ζ of $C_h(S)$. By Corollary 1, $C(S,\zeta,L_h(\zeta,a))=C(S,\zeta,D)$ for any h-curve $L_h(\zeta,a)$. So, if $C(S,\zeta,D)=Y$, then ζ belongs to $I_h^+(S)$, and if $C(S,\zeta,D)\neq Y$, then ζ belongs to $M_h(S)$.

The assertion (ii) follows from (i) and Theorem 1.

Proof of Theorem 5. Consider a point ζ of the set $K_h(S)$. By Corollary 1, $C(S,\zeta,L_h(\zeta))=C(S,\zeta,\Delta_h(\zeta))$ for any h-curve $L_h(\zeta)$ and any h-angle $\Delta_h(\zeta)$. If $C(S,\zeta,\Delta_h(\zeta))\neq Y$, then ζ belongs to $L_h(S)$. If $C(S,\zeta,\Delta(\zeta))=Y$, then ζ belongs to $I_h(S)=I_h^+(S)$. This proves the inclusion $K_h(S)\subset L_h(S)\cup I_h^+(S)$.

To prove the converse inclusion, we use arguments analogous to those in the proof of Theorem 3. It was noted above, that $I_h^+(S) = I_h(S) \subset K_h(S)$. Consider a point ζ of the set $L_h(S)$ and suppose there exists an h-angle $\Delta_h(\zeta)$ such that $C(S,\zeta,\Delta_h(\zeta)) \neq C(S,\zeta,L_h(\zeta))$ for any h-curve $L_h(\zeta)$. Then, we can choose an element g in $C(S,\zeta,\Delta_h(\zeta))$ which does not belong to $C(S,\zeta,L_h(\zeta))$. Denote by $\{z_n\}$ a sequence of points in $\Delta_h(\zeta)$ for which $\lim_{n\to\infty} z_n = \zeta$, and $\lim_{n\to\infty} y_n = y$, where

 $y_n = S(z_n)(n), n \in N$ (cf. the proof of Theorem 3). The sequence $\{z_n\}$ contains a subsequence $\{z_{n_k}\}$ such that $\lim_{k\to\infty} \rho(z_{n_k}; L_h(\zeta, a)) = 0$ for some h-curve $L_h(\zeta, a)$ contained in $\Delta_h(\zeta)$). The contradiction to the assumption follows now in the same way as in the proof of Theorem 3.

REMARK 1. We note that the assertions of Theorems 4 and 5 remain valid for a locally compact metric space Y.

REMARK 2. Theorem 4 is a generalization to set-mappings of improved version of Meier's theorem for meromorphic functions which is obtained by V. I. Gavrilov and A. N. Kanatnikov [2]. In the special case h(x) = x, Theorem 4 improves a result of S. Yamashita [7]. Theorem 5 is a generalization to set-mappings of the Lindelöf type theorem for meromorphic functions which is proved by Abdu Al'Rahman Hassan and V. I. Gavrilov [1].

REFERENCES

[1] ABDU AL'RAHMAN HASSAN, V. I. GAVRILOV, The set of Lindelöf points for meromorphic functions, Matematiqki Vesnik, 40(3-4), (1988), 181-184.

[2] E. P. Dolzhenko, Boundary properties of arbitrary functions Izv. Akad.

Nauk SSSR, 1, (1967), 1–13.

[3] V. I. GAVRILOV, A. N. KANATNIKOV, Characterization of the set M(f) for meromorphic functions Dokl. Akad. Nauk. SSSR, 18(2), (1977), 15-17. English transl. in Soviet Math. Dokl., 18(2) (1977), 270-272.

[4] Ž. S. OGANESJAN, Cluster sets of set-mappings Dokl. Akad. Nauk SSSR, 275(6), (1987), 1313-1316. frills English transl. Soviet Math. Dokl., 44(1),

(1984).

- [5] D. C. Rung, Meier type theorems for general boundary approach and σ -porous exceptional sets Pacific J. Math., 76(1), (1978), 201-213.
- [6] U. U. STAYANARAYANA, W. L. WEISS, The geometry of convex curves tending to I in the unit disc Proc. Amer. Math. Soc., 41(1), (1973), 159-166.
- [7] S. Yamashita, Cluster sets of set-mappings Ann. Pol. Math., 35(1), (1977), 75-98.
- [8] N. Yanagihara, Angular cluster sets and horocyclic angular cluster sets Proc. Japan Acad., 45(6), (1969), 423-428.

Department of Mathematics Moscow State University Moscow 117234

Department of Mathematics Leninakan Filial of Erevan Polytechnic Institute Leninakan, Armenia