FILOMAT-20, Niš, September 26-28, 1991

INTERIOR HOMOGENEOUS BOUNDARY VALUE PROBLEM FOR SIMPLE CONECTED-REGIONS

Boško Damjanović

ABSTRACT. In this paper the functions $\Theta_1(z)$ and $\Theta_2(z)$ which are analytic in the simple connected regions S^+ and D^+ , respectively, were determined when the boundary conditions

 $\Theta_2(\beta(t)) = G(t) \cdot \Theta_1(t)$

are known.

Let S^+ and D^+ be finite simple connected regions, bounded by closed Ljapunov curvs L and Γ respectively. Suppose that the boundaries L and Γ are traversed in the positive sense relative to their interiors S^+ and D^+ respectively, so that a person moving along L or Γ in this direction always has their interiors lying to his left.

Let $\beta(t)$ be the function given on L satisfying the following conditions:

a) It transforms homeomrphically the closed contour L into the closed contour changing the direction of movement.

b) Function $\beta(t)$ has continuous derivatives which are different from zero at all the points of the contour L.

Let the function $\beta^{-1}(t)$, $t \in L$, be the inverse function of $\beta(t)$.

We shall determine the functions $\Theta_1(z)$ and $\Theta_2(z)$ which are analytic in S^+ and D^+ , respectively, whose boundary values on the appropriate contours satisfy the following boundary condition

(1)
$$\Theta_2(\beta(t)) = G(t) \cdot \Theta_1(t), t \in L,$$

where G(t) is a continuous function on L in the sense of Holder. First, suppose that $k = \frac{1}{2\pi} [\arg G(t)]_L = 0$, and consider the boundary value problem

(2)
$$\Gamma_2(\beta(t)) - \Gamma_1(t) = \ln G(t), t \in L,$$

where the function $\ln G(t)$ satisfies the Holder's condition on L. It is known that the particular solution of (2) is determined by the formulas

$$\Gamma_1(z) = -\frac{1}{2\pi i} \int_L \frac{\sigma(t)}{t - z} dt, \qquad z \in S^+,$$

$$\Gamma_2(z) = \frac{1}{2\pi i} \int_\Gamma \frac{\sigma(\beta^{-1}(t))}{t - z} dt, \qquad z \in D^+,$$

AMS MSC (1980): 32A99.

where $\sigma(t)$, $(t \in L)$ is the solution of the Fredholm integral equation

$$(F\sigma)(t) \equiv \sigma(t) - \frac{1}{2\pi i} \int_{L} \left[\frac{1}{t-\tau} - \frac{\sigma'(\tau)}{\sigma(\tau) - \sigma(t)} \right] \sigma(\tau) d\tau = \ln G(t), t, \tau \in L.$$

Now, it is easy to check that the coefficient G(t) from the problem (2) we can represent in the form

$$G(t) = \frac{X_{0,1}(\beta(t))}{X_0(t)}$$

where $X_0(z) = e^{\Gamma_1(z)}$, $z \in S^+$ and $X_{0,1} = e^{\Gamma_2(z)}$, $z \in D^+$. In this way, the boundary condition (1) can be represented in the following way:

$$\frac{\Theta_2(\beta(t))}{X_{0,1}(\beta(t))} = \frac{\Theta_1(t)}{X_0(t)}, \quad t \in L.$$

So, the functions $\delta_2(z) = \frac{\Theta_2(z)}{X_{0,1}(z)}$, $z \in D^+$, and $\delta_1(z) = \frac{\Theta_1(z)}{X_0(z)}$, $z \in S^+$, satisfy the following boundary condition

(3)
$$\delta_2(\beta(t)) = \delta_1(t), \quad t \in L,$$

The general solution to the problem (3) is given by formulae $\delta_1(z) = C$ and $\delta_2(z) = C$ where C is an arbitrary complex constant. So, the functions $\Theta_2(z) = C \cdot e^{\Gamma_2(z)}$, $z \in D^+$ and $\Theta_1(z) = C \cdot e^{\Gamma_1(z)}$, $z \in S^+$, are the general solution to the problem (1) in the case k = 0.

Let us consider the boundary condition (1) where the index k corresponded to the function G(t) is any real number. Assume that the coordinate origin belongs to the region S^+ and define the function $G_0(t)$ in the following way: $G_0(t) = t^{-k}G(t)$, $t \in L$.

Now, $\frac{1}{2\pi} [\arg G_0(t)]_L = 0$. Hence, for the homogeneous boundary value problem, with the coefficient $G_0(t)$ there exist the functions $X_0(z)$ and $X_{0,1}(z)$ being analytic in S^+ and D^+ respectively, and different from zero successively in $S^+ \cup L$ and $D^+ \cup \Gamma$, and which on the appropriate contours L and Γ have the limits $X_0(t) \in H(L)$ and $X_{0,1}(t) \in H(L)$ satisfying the following boundary value condition:

$$X_{0,1}(\beta(t)) = G_0(t) \cdot X_0(t), t \in L.$$

Those functions are determined by the formulae

$$X_{0}(z) = \exp\left[-\frac{1}{2\pi i} \int_{L} \frac{\sigma(t)}{t-z} dt\right], \qquad z \in S^{+},$$

$$X_{0,1}(z) = \exp\left[\frac{1}{2\pi i} \int_{\Gamma} \frac{\sigma(\beta^{-1}(t))}{t-z} dt\right], \qquad z \in D^{+},$$

where $\sigma(t)$, $t \in L$, is the solution of the equation $(F\sigma)(t) = \ln G_0(t)$. According to all of this it follows that on the contour L, the coefficient G(t) of the problem (1) can be represented in the form

(4)
$$G(t) = \frac{X_{0,1}(\beta(t))}{t^{-k}X_0(t)}, \qquad t \in L,$$

From the relations (1) and (4) we get the following boundary conditions

(5)
$$\frac{\Theta_2(\beta(t))}{X_{0,1}(\beta(t))} = \frac{\Theta_1(t)}{t^{-k}X_0(t)}, \quad t \in L.$$

Let us denote by $f_2(z)$ the functions $\frac{\Theta_2(z)}{X_{0,1}(z)}$, $z \in D^+$, and distinct the cases k < 0 and k > 0.

a) Let k < 0.

The function $\frac{\Theta_1(z)}{z^{-k}X_0(z)}$, $z \in S^+$, has the point z = 0 as a pole of order -k, so that it can be represented in the form:

$$\frac{\Theta_1(z)}{z^{-k}X_0(z)} = \sum_{i=1}^{-k} \frac{c_i}{z^i} + f_1(z), \qquad z \in S^+,$$

where $f_1(z)$ is indefinite analytic function in S^+ and c_i , i = 1, 2, ..., -k, are complex constants.

If we introduce notation $B_{2j-1} = \operatorname{Re} c_j$, $B_{2j} = \operatorname{Im} c_j$,

$$\tau_{2j-1}(t) = \frac{1}{t^j}, t \in L, \qquad \tau_{2j}(t) = \frac{i}{t^j}, t \in L,$$

then by (3) we shall get

$$f_1(z) = B_0 - \sum_{j=1}^{-2k} \frac{B_j}{2\pi i} \int_L \frac{\sigma_j(t)}{t - z} dt , \qquad z \in S^+$$

$$f_2(z) = B_0 + \sum_{j=1}^{-2k} \frac{B_j}{2\pi i} \int_{\Gamma} \frac{\sigma_j(\beta^{-1}(t))}{t - z} dt , \qquad z \in D^+ ,$$

where B_0 is an arbitrary complex constant and $\sigma_j(t)$ are the solutions of Fredholm's integral equations

$$(F\sigma_j)(t) = \tau_j(t), \qquad j = 1, 2, \dots, -2k.$$

Let us assume that $B_{2j+1}=\operatorname{Re} B_0,\ B_{2j+2}=\operatorname{Im} B_0$ and let us define the functions:

$$\begin{split} U_{2j-1}(z) &= \frac{1}{z^j} - \frac{1}{2\pi i} \int_L \frac{\sigma_{2j-1}(t)}{t-z} \, dt \,, \qquad z \in S^+ \,, \\ U_{2j}(z) &= \frac{i}{z^j} - \frac{1}{2\pi i} \int_L \frac{\sigma_{2j}(t)}{t-z} \, dt \,, \qquad z \in S^+ \,, \\ j &= 1, 2, \dots, -2k \,, \\ U_{-2k+1}(z) &= 1 \,, \quad z \in S^+ \,, \qquad U_{-2k+2}(z) = i \,, \quad z \in S^+ \,, \\ V_j(z) &= \frac{1}{2\pi i} \int_\Gamma \frac{\sigma_j(\beta^{-1}(t))}{t-z} \, dt \,, \quad z \in D^+ \,, \quad j = 1, 2, \dots, -2k \,, \\ V_{-2k+1}(z) &= 1 \,, \quad z \in D^+ \,, \qquad V_{-2k+2}(z) = i \,, \quad z \in D^+ \,. \end{split}$$

Now, we can formulate the general solution of the homogeneous boundary value problem (1), in the case k < 0, in the following way

(6)
$$\Theta_{1}(z) = z^{-k} X_{0}(z) \sum_{i=1}^{-2k+2} B_{i} U_{i}(z), \qquad z \in S^{+},$$

$$\Theta_{2}(z) = X_{0,1}(z) \sum_{i=1}^{-2k+2} B_{i} V_{i}(z), \qquad z \in D^{+}.$$

b) Let $k \geq 0$.

Now, the function $\frac{\Theta_1(z)}{z^{-k}X_0(z)}$ is analytic in S^+ and for k>0 is equal to zero at the coordinate origin, and the function $\frac{\Theta_2(z)}{X_{0,1}(z)}$ is analytic in D^+ . According to (5) we get that the solution of the problem (1) can be presented in the form

$$\Theta_1(z) = C \cdot z^{-k} \cdot X_0(z), \qquad z \in S^+,
\Theta_2(z) = C \cdot X_{0,1}(z), \qquad z \in D^+.$$

where C is an arbitrary complex constant. For z = 0 it is easy to verify that C = 0 and consequently $\Theta_1(z) = 0$, $z \in S^+$, and $\Theta_2(z) = 0$, $z \in D^+$.

If k = 0 then $\Theta_1(z) = C \cdot X_0(z)$, $z \in S^+$, and $\Theta_2(z) = C \cdot X_{0,1}(z)$, $z \in D^+$. This solution can be obtained from the formula (6) assuming that (6) holds for k = 0. Therefore, we have proved the following theorem:

Theorem If the index $k \le 0$, then the boundary value problem (1) is solvable and its solution can be represented by the formula (6) containing 2(-k+1) arbitrary real constants. If, however, k > 0 then problem (1) has only trivial solution.

REFERENCES

- [1] GAHOV F. D., Krajevije zadači, Nauka, 1977.
- [2] ISOHANOV R. S., O nekatorih graničnih zadač teoriji analitičeskih funkcij, Trudi Mat. in-ta AN Gruz. SSSR, 52 (1976), 61-80.
- [3] NEČAJEV A. H., Pro adnu krajevuju zadaču dlja pari funkcij analitičeskih v oblasti, Donov. AN URSR, 10 (1979), 891-893.

Poljoprivredni fakultet, 11 000 Beograd Yugoslavia