A FIXED POINT THEOREM FOR MULTIVALUED MAPPINGS IN PARANORMED SPACES

GAJIĆ LJILJANA

ABSTRACT The purpose of this paper is to generalized the fixed point theorem for multivalued mappings proved in [2] for a class of subsets of paranormed spaces.

- 1. Introduction. Let E be a linear space on the real or complex number field. The function $|| ||^* : E \mapsto [0, +\infty)$ will be called paranorm iff:
 - 1. $||x||^* = 0 \Leftrightarrow x = 0;$
 - 2. $||-x||^* = ||x||^*$, for every $x \in E$;
 - 3. $||x+y||^* \le ||x||^* + ||y||^*$, for every $x, y \in E$;
 - 4. If $||x_n x_0||^* \to 0$, $\lambda_n \to \lambda_0$ then $||\lambda_n x_n \lambda_0 x_0||^* \to 0$, $n \to \infty$.

The function $d: E \times E \to [0, +\infty)$ defined by $d(x, y) = ||x - y||^*$ is the distance function on E, and $(E, ||\ ||^*)$ is a topological vector space.

DEFINITION 1. The subset K of $(E, || ||^*)$ is said to be of Zima's type iff there exists a number C = C(K) > 0 such that

$$||\lambda x||^* \le C \cdot \lambda \cdot ||x||^*$$

for every $0 \le \lambda \le 1$ and every $x \in K - K$

REMARK. O. Hadžić [1] gave an example of $K(K \subseteq E)$, where $(E, || ||^*)$ is not a locally convex paranormed space, such that K is of Zima's type.

Definition 2. A subset K of a metric space (X,d) is called proximal iff for each $x \in X$, there exists an element $k \in K$ such that d(x,k) = d(x,K) where $d(x,K) = \inf(d(x,y)| y \in K)$.

We denote the family of all nonempty bounded proximal subsets of X by 2_{bp}^X and the Hausdorff metric defined on 2_{bp}^X induced by d by H, i.e., for $A,B \in 2_{bp}^X$, $H(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A)\}$.

Let $T: X \to 2_{bp}^X$. Then, for $x \in X$, by an orbit of x under T, $\sigma(x)$, we mean the sequence $\{x_n: x_0 = x, x_n \in Tx_{n-1}\}$. An orbit $\sigma(x)$ is called a strongly regular if

$$\sigma(x) = \{x_n | x_n \in Tx_{n-1}, d(x_n, x_{n-1}) = d(x_{n-1}, Tx_{n-1})\}\$$

AMS MSC (1980): 47H10

DEFINITION 3. A convex metric space (X, d) have Property (C) iff every bounded decreasing net of nonempty closed convex subsets of X has a nonempty intersection.

REMARK. Every weakly compact convex subset of a Banach space has Property (C).

DEFINITION 4. The convex hull of a set $A(A \subset E)$ is the intersection of all convex sets in E containing A and it is denoted by conv A.

2. Results

Theorem 1 Let $(E, || ||^*)$ be a complete paranormed space and K a nonempty closed bounded convex subset of E with Property (C). Let T be a mapping of K into the family of nonempty convex proximal subsets of K such that T(K) is of Zima's type and

 $H(Tx, Ty) \le \phi(\frac{1}{k} \max\{d(x, Tx), d(y, Ty)\}),$

for $k = \max\{1, C(T(K))\}$, each $x, y \in E$ and $\phi: [0, +\infty) \to [0, +\infty)$ nondecrea sing right continuous function such that $\phi(t) < t$ for t > 0. Then there exists a nonempty subset M of K such that T = M for all $x \in M$.

PROOF. For any $x_0 \in K$ we may construct a strongly regular orbit at x_0 for T. First we claim that $\lim d(x_n, Tx_n) = 0$ where $\sigma(x_0) = \{x_n\}$. Observe that

$$D_n \equiv d(x_n, Tx_n) \le H(Tx_{n-1}, Tx_n) \le \phi \left(\frac{1}{k} \max\{d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n)\}\right)$$

so that if $D_{n-1} < D_n$, then $D_n \le \phi(\frac{1}{k}D_n) < D_n$. This is a contradiction. Thus $D_n \le \phi(\frac{1}{k}D_{n-1}) < D_{n-1}$. Since $\{D_n\}_{n \in \mathbb{N}}$ is a monotone decreasing sequence of non-negative real numbers, $\lim_{n\to\infty} D_n = D$ exists. If D > 0, then using the right continuity of ϕ we obtain

$$D \le \lim_{D_n \to D+0} \phi(D_n) = \phi(D) < D$$

This contradiction shows that D = 0.

Now we let $H_{\varepsilon} = \{x \mid d(x, Tx) \leq \varepsilon\}$ for each $\varepsilon > 0$. From the above argument we have that $H_{\varepsilon} \neq \phi$ for each $\varepsilon > 0$.

Our second claim is that $\overline{\text{conv}}T(H_{\varepsilon}) \subseteq H_{\varepsilon}$ for each $\varepsilon > 0$. Let $y \in \overline{\text{conv}}T(H_{\varepsilon})$ and let $\delta > 0$ be given: Choose $\lambda_i \in [0,1]$ $y_i \in H_{\varepsilon}$ and $y_i^* \in Ty_i$ for each $i = 1, 2, \ldots, n$ so that $\sum_{i=1}^n \lambda_i = 1$ and

$$d(y, \sum_{i=1}^{n} \lambda_i y_i^*) \le \delta.$$

Since Ty is proximal, there exists $z_i \in Ty$ such that $d(y_i^*, z_i) = d(y_i^*, Ty)$ for i = 1, 2, ..., n.

Now

$$\begin{split} d(y,Ty) &\leq d(y,\sum_{i=1}^{n}\lambda_{i}y_{i}^{*}) + d(\sum_{i=1}^{n}\lambda_{i}y_{i}^{*},Ty)l) \\ &\leq \delta + d(\sum_{i=1}^{n}\lambda_{i}y_{i}^{*},\sum_{i=1}^{n}\lambda_{i}z_{i}) \leq \delta + C(T(K))\sum_{i=1}^{n}\lambda_{i}d(y_{i}^{*},z_{i}) \\ &= \delta + C(T(K))\sum_{i=1}^{n}\lambda_{i}d(y_{i}^{*},Ty) \leq \delta + C(T(K))\sum_{i=1}^{n}\lambda_{i}H(Ty_{i},Ty) \\ &\leq \delta + C(T(K))\sum_{i=1}^{n}\lambda_{i}\phi(\frac{1}{k}\max\{d(y_{i},Ty_{i}),d(y,Ty)\}) \\ &\leq \delta + k\phi(\frac{1}{k}\max\{\varepsilon,d(y,Ty)\}). \end{split}$$

If $d(y,Ty) > \varepsilon$, than $d(y,Ty) \le \delta + k\phi(\frac{1}{k}d(y,Ty))$. Since $\delta > 0$ is arbitrary, this leads to an obvious contradiction that $d(y,Ty) \le k\phi(\frac{1}{k}d(y,Ty)) < d(y,Ty)$. Hence we must have $d(y,Ty) \le \varepsilon$ and $y \in H_{\varepsilon}$. This prove our second claim.

Let $\mu = \{\overline{\operatorname{conv}}\ T(H_{\varepsilon}) \mid \varepsilon > 0\}$. Then μ is a bounded decreasing net of nonempty closed convex subsets so by Property (C) it has nonempty intersection. Hence $\phi \neq \cap \mu \subseteq \cap \{H_{\varepsilon} \mid \varepsilon > 0\}$. This shows that function $x \to d(x, Tx)$ attains it's infinum over K and because of the first claim this infinum must be zero. Let $M = \cap \{H_{\varepsilon} \mid \varepsilon > 0\}$ and proof is complete.

Using the proof of Theorem 1 and Theorem 2 [2] one can prove.

Theorem 2. Let $(E, || ||^*)$ be a complete paranormed space and K a nonempty closed bounded convex subset of E with Property (C). Let T be a mapping of K into the family of nonempty convex proximal subsets of K such that T(K) is of Zima's type and T satisfies condition:

For given $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x, y \in K$

$$\varepsilon \leq \max\{d(x,Tx),d(y,Ty)\} < \varepsilon + \delta \Rightarrow H(Tx,Ty) < \frac{\varepsilon}{k}$$

Then there exists a nonempty subsets M of K such that Tx = M for all $x \in M$.

REFERENCES

- [1] O. Hadžić, On equilibrium point in topological vector spaces, Comm. Math. Univ. Carolinea, 23 (1982), 727-738.
- [2] H. KANEKO, A report on general contractive type conditions for multi-valued mappings, Math. Japonica, 33(4) (1988), 142-149.

University of Novi Sad, Faculty of Science, Institute of Mathematics Trg Dositeja Obradovića 4, 21 000 Novi Sad, Yugoslavia