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ON A THEOREM OF GONCHAR AND RAHMANOV
DoiéiNn PeTKkoOVIG

ABSTRACT. In this note we give the compleie proof of the theorem of Gonchar
and Rahmanov [2, Teopeaal.

Let
(1) )= Z ez

be a holomorphie function in z = 0 or formal power series on z. Let P, be the set
of polynomial in z with deg < n, and R, » = {E PEP,qgE Py, g#0}
For integers n and m there are p, », € P, and ¢n m € P, ¢ # 0, such that

(2) (qﬂ.mf - pn,m) (Z) = O(Zn+m+l), z—0.
Set

a7 )= pn,m(z)
(3) nyn(7) PANER

Tn,m are called the Pade’s approximations of type [n/m] for (1) and {mu m}nm =0
is Pade’s table for (1). Let m,(2) = my n(2), n=0,1,2,... be the diagonal Pade’s
approximates [1].

Let H(U) be the set of holomorphic functions on the unit ball U = {z € C :
|z < 1}. If f € H(U) then 7, does not converges to f on U [6] (obviously because
of poles).

It

() 7 € H(U),
then by [2]
(5) Tn(z) — f(z), uniformly on U.
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Now, suppose that (4) is not true for all n > ng, but only for some subsequence
A = {n}32,. Of course (5) is not true. Let p be the radius of the maximal ball
Up={z : |z| < p} such that from (4) for n € A, follows (5) when n — co, n € A.
It is known that p < 4/5 [6, Teopemal.
~ The best known lower bound for p has been established by

THEOREM OF GONCHAR AND Raumanov ([2,Teopemal). Let g(z,1) be the Green’s
Junction on {e" : T <0<}, and r €(0,1) be the solulion of the equation

g(r,1) = 2g(r, 0).
Then p > r=10,629.

In [2], there is only the sketch of proof of [2,Teopema). In this note we give
the complete proof. We start with

LeEMMA 1. Let Ay, be the Borel measure, s(\y) support of Ay and w, = In —45 be

. 53
the Rabben’s constant [5]. Then (X)) =Tz, where Fe={z=¢?:2Z<|0|<7}.
. 1 i . . .
Proor. For z = ¢'¥, we have that In = In =—— is convex function of ¢,
[1— z] 2s8in £

¢ € (0,27); Let v be Borel measure and V" logarithmic potential of v [4,5], then

v _ 1 ig
V¥(z) —/In T dp(e'?)

is convex function of ¢, ¢ € AU \ s(v).

Set Ty = {z =¢'? : 0 < |p| < 7}, (0 < 7). We shall prove that s(A1) = Ty,,
0 < <. Ifit is not true, then there are ¢, theta” € Ty, (0,6") N s(Ay) = 0,
0" € s(M1), 0" € s(Ay). From [5, Teopema 4.4] we have

V)\l(eiﬁ’) + In =w = [_,r.\l(eig-‘.') 4 In

1
T = e

Tor 4 € (8',8") we have

V21 (e} + In wy.

! >
|1 —elf] =

Since, V*1(2) and In ﬁ are lower convex functions on (#,0"), it follows that

: 1
Tf}'l(elg)+1nm:w1, 0 e (91,9”)-

Thus J i
S A1 aif = 'l
7 (V (e )+l"___|1_eie|>‘0’ g e, 0,
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and so
d2 AL iH 1 4 ! it

This is a contradiction. )
Hence s(Ay) = o, 0, = {€'? : 0; < 0 < 27 — 0,}. We shall prove that 8, = 0s.
If 01 # 02, set Al(e) = A1(€), e is a Borel subset of U, € = {Z : z € e}. Now

1 =w zel
/Al —_ 1 ‘91,‘92
! (Z)-I_ln—i]_—zl— {>WJ_ Izlzl )
but
VM(Z) +In L = VA;(E) +1n . = =w zE€Tg g .
|1 — z| |1 - z] >w |z =1

Since, AT = A1 ([5,Y repsnerme 4.3]) we have 0; = 8, and so s(A;) = Ty,.
Let us consider the following function

(6) w(z) = V)”(z) + 10—+ 294, (7, 00) — gu, (2, 1).

1
[1—2]
¢ is harmonic on C'\ T'g,, and is constant on Ty, ([5, Teopena 4.4]) o(z) =wy. By
maximumn principle we have @(z) = wq, z € C.

When z — co we have

W1 = 27'5'0 - 2930(003 1) = 2790 - 990(1) DO)

where vy, is Rabben’s constant of T.
Tunction

w(z) = V*1(z) +In

1
|1_ ~| - ge(Z, 1) + 2_1]9(2’,00) 1

is superharmonic on C'\ Ty,
Again, by maximum principle we have

>
w(eo) > minw(z).

Further

. . 1 1

z) = min | ¥ 1 i A — | =

g =i (V7@ 0 ) 2 i (6 e )
w1 = 275, — goo(1, 00).

Since w(00) = 275 — gs(00, 1) = 295 — go(1, 00), we have

279 - 99(1)00) 2 2790 - geo(lim) ’
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and

d
70 [27s — ga(1,00)] = 0.

Let F'(z,00) be a conformal mapping from €'\ I, on {z : |z| > 1}, such that
F(o0,600) = co. It is easy to see that

24+ 14+/22 —=2zcoslp + 1

Fl(z,0p) = .
(7, 00) 2(:03%1
and so
241422 —2zcos0y + 1
T oz, =1
({) 9a0 (2 oo) QCOS%Q
and
1-F(1 o) F(z,00)
1)i=1 ! g
(8) QQD(Z, ) nr F(Z,QU)—F(I,HO)

From (7) and (8) we have
79 = In

[

cos 5

and
) By —gafiie8) =Tn 1
T8 Tl = cos§(1+sinf)
From (9), we see that 8y is solution of the equation
.00
2811125—%-511]-2-7 I=0.
Hence . 1
T
6 = — d ! '—‘l e —
0 3 an Ll T13"/g
From (6), (7) and (8), we have

(z4+14+Ve2—z24+1)(z2 -2+ V22— 24 1)?
3V3(z+vZzE -z +1)2

(10) V*1(z)+1n

—w;=In

1
|1 - 2|

Proof of Gonchar—-Rahmanov Theorem:

Let mp = mo(f) = B, degp, = n, degg, = n. From (2) we have that

Gtk 80D "

pe| € H(U). By the Caushy integral formula it follows that

f=p)z) 1 flanf—pa)(t) 1

(2n
Q) — s FETES
alr

dt, z € U, where Q(z) € P,.
z
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So we have

(11) ( —mn)(e) = o [ E (@) )

2m 2t (Qgp)(z) t—2z
au

Now, for ||fllev = M, p(z,0U) = tnrlilargr |t — 2|, we see that
€

M

. ant1 | Qllou
(12) I(Jr_ﬂ-n)(z)l <,0(Z aU)l | *

1@ @)
Let w, and jin are measures associated, respectively, with polynomials } and ¢n;
(ie., if P,(z) = H(z , then measure associated wilh polynomial P, p,, 1s

given by p, = %Z (), where §(z;) is the Dirac measure concentrated at zp,
k=1
k=1,2,...,n). IFrom (12) we have

(13) ~1In|(f = mn)(2)| < 21nfel+ (V7 + VE) (2) = min (V7 + VE) () +o(1)

‘Let Q be such that s(v,) C U and s(pn) CC\U, n€ A CN.

Let p, be measure associated with i, on dU; as in ([4, 5]), i. e (V":t -
Vkn(z) = const, z € Uy; from (13) it follows

1
;1“ I(f —ma)(2)| <
(14) vn !, . v e
2ln|z| + (V +V ) (=) min (V +V ) () + o(1),
n—oo, neEAN zel.
Let Ay be a subsequence of A, such that
}E& :7 Inl{f—m)(2)| = nE];\n% n 1n |(f — m)(2)].

Further, let Ay be a subsequence of Ay, such that p), — p and v, — v, where u
and v are unit measures on 8. From [4, 5], we have

(15) o )—hll(f_ T)(2)| <
2la|z|+ (V' + V) (2) — 1(15'1111 (Vi +VE) (@), zel.

Set ji(€) = p(e), where € = 1, and e is a Borel subset of U.
Forze U

2In |z} + (VY + VH)(2) — trg{%lr} (VY +VHy () =
(16) o m ] R T,
v+ V) () - i (v 4 ¥9) ().

z teaty
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Set & = [ Ay dji(t), where A; is measure on OU/ as in [5].
For z € U, we have

(9 W +vA Q) = [P+ V) Q) ai)
and

1 v A 1 = min t 78 1 e
EEIE:I;-(V +¥ )(Z)‘;lzlzl‘/(vx +PJ)(z)dnu(£)2

Y [ min 7+ v () dnty:
From (17) and (18) we have

(V2 + V) () = min (V" + V%) () <
a [l v Q- min (v O] aney <

1
(V4 V%) () —min (P + V) (1), lel=1, amgé=arg .
z i]=1

From (16) and (19), we have

@) Fm ol = m)@ < (P4 V) ) - min (4 + 74 ().

From (10) and (20) we have

T~ In|(f —m)(2)] <
) (8410 = Er1) (524 07 E11)
In . .
3B (£ /= E+1)

It 1s easy lo see that the right hand side in (21) is < 0, for |z| < r, where r is
defined by the equation

2g§(r, 0)— g%(r, 1) =90.

The proof is complete.
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