FILOMAT-20, Niš, September 26-28, 1991

ON A THEOREM OF GONCHAR AND RAHMANOV Dojčin Petković

ABSTRACT. In this note we give the complete proof of the theorem of Gonchar and Rahmanov [2, Teopema].

Let

(1)
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

be a holomorphic function in z=0 or formal power series on z. Let P_n be the set of polynomial in z with deg $\leq n$, and $R_{n,m}=\left\{\frac{p}{q}:p\in P_n,\,q\in P_m,\,q\neq 0\right\}$

For integers n and m there are $p_{n,m} \in P_n$ and $q_{n,m} \in P_m$, $q \neq 0$, such that

(2)
$$(q_{n,m}f - p_{n,m})(z) = O(z^{n+m+1}), \quad z \to 0.$$

Set

(3)
$$\pi_{n,m}(z) = \frac{p_{n,m}(z)}{q_{n,m}(z)}.$$

 $\pi_{n,m}$ are called the Pade's approximations of type [n/m] for (1) and $\{\pi_{n,m}\}_{n,m} = 0$ is Pade's table for (1). Let $\pi_n(z) = \pi_{n,n}(z)$, n = 0, 1, 2, ... be the diagonal Pade's approximates [1].

Let H(U) be the set of holomorphic functions on the unit ball $U = \{z \in C : |z| < 1\}$. If $f \in H(U)$ then π_n does not converges to f on U [6] (obviously because of poles).

If

$$(4) \pi_n \in H(U),$$

then by [2]

(5)
$$\pi_n(z) \to f(z)$$
, uniformly on U .

Now, suppose that (4) is not true for all $n \geq n_0$, but only for some subsequence $\Lambda = \{n_k\}_{k=1}^{\infty}$. Of course (5) is not true. Let ρ be the radius of the maximal ball $U_{\rho} = \{z : |z| < \rho\}$ such that from (4) for $n \in \Lambda$, follows (5) when $n \to \infty$, $n \in \Lambda$. It is known that $\rho \leq 4/5$ [6, Teopema].

The best known lower bound for ρ has been established by

Theorem of Gonchar and Rahmanov ([2,Teopema]). Let g(z,t) be the Green's function on $\{e^{i\theta}: \frac{\pi}{3} \leq \theta \leq \pi\}$, and $r \in (0,1)$ be the solution of the equation

$$g(r,1) = 2g(r,0).$$

Then $\rho \geq r = 0,629$.

In [2], there is only the sketch of proof of [2, Теорема]. In this note we give the complete proof. We start with

LEMMA 1. Let λ_1 , be the Borel measure, $s(\lambda_1)$ support of λ_1 and $\omega_1 = \ln \frac{4}{3\sqrt{3}}$ be the Rabben's constant [5]. Then $s(\lambda_1) = \Gamma_{\frac{\pi}{3}}$, where $\Gamma_{\frac{\pi}{3}} = \{z = e^{i\theta} : \frac{\pi}{3} \le |\theta| \le \pi\}$.

PROOF. For $z=\mathrm{e}^{\mathrm{i}\varphi}$, we have that $\ln\frac{1}{|1-z|}=\ln\frac{1}{2\sin\frac{\varphi}{2}}$ is convex function of φ , $\varphi\in(0,2\pi)$; Let ν be Borel measure and V^{ν} logarithmic potential of ν [4,5], then

$$V^{\nu}(z) = \int \ln \frac{1}{\sin \frac{\varphi - \theta}{2}} d\mu(e^{i\theta})$$

is convex function of φ , $\varphi \in \partial U \setminus s(\nu)$.

Set $\Gamma_{\theta} = \{z = e^{i\varphi} : \theta \leq |\varphi| \leq \pi\}$, $(\theta < \pi)$. We shall prove that $s(\lambda_1) = \Gamma_{\theta_0}$, $0 < \theta_0 < \pi$. If it is not true, then there are θ' , thet $a'' \in \Gamma_{\theta_0}$, $(\theta', \theta'') \cap s(\lambda_1) = \emptyset$, $\theta' \in s(\lambda_1)$, $\theta'' \in s(\lambda_1)$. From [5, Teopema 4.4] we have

$$V^{\lambda_1}(e^{\mathrm{i}\theta'}) + \ln \frac{1}{|1 - e^{\mathrm{i}\theta'}|} = \omega_1 = V^{\lambda_1}(e^{\mathrm{i}\theta''}) + \ln \frac{1}{|1 - e^{\mathrm{i}\theta''}|}.$$

For $\theta \in (\theta', \theta'')$ we have

$$V^{\lambda_1}(e^{i\theta}) + \ln \frac{1}{|1 - e^{i\theta}|} \ge \omega_1.$$

Since, $V^{\lambda_1}(z)$ and $\ln \frac{1}{|1-z|}$ are lower convex functions on (θ', θ'') , it follows that

$$V^{\lambda_1}(e^{i\theta}) + \ln \frac{1}{|1 - e^{i\theta}|} = \omega_1, \qquad \theta \in (\theta', \theta'').$$

Thus

$$\frac{d}{d\theta} \left(V^{\lambda_1}(\mathrm{e}^{\mathrm{i}\theta}) + \ln \frac{1}{|1 - \mathrm{e}^{\mathrm{i}\theta}|} \right) = 0, \qquad \theta \in (\theta', \theta''),$$

and so

$$\frac{d^2}{d\theta^2} \left(V^{\lambda_1}(\mathrm{e}^{\mathrm{i}\theta}) + \ln \frac{1}{|1 - \mathrm{e}^{\mathrm{i}\theta}|} \right) = 0, \qquad \dot{\theta} \in (\theta', \theta'').$$

This is a contradiction.

Hence $s(\lambda_1) = \Gamma_{\theta_1,\theta_2} = \{e^{i\theta} : \theta_1 < \theta \le 2\pi - \theta_2\}$. We shall prove that $\theta_1 = \theta_2$. If $\theta_1 \ne \theta_2$, set $\lambda_1^*(e) = \lambda_1(\bar{e})$, e is a Borel subset of ∂U , $\bar{e} = \{\bar{z} : z \in e\}$. Now

$$V^{\lambda_1}(z) + \ln \frac{1}{|1-z|} = \begin{cases} = \omega_1 & z \in \Gamma_{\theta_1,\theta_2} \\ \ge \omega_1 & |z| = 1 \end{cases},$$

but

$$V^{\lambda_1}(z) + \ln \frac{1}{|1-z|} = V^{\lambda_1^*}(\bar{z}) + \ln \frac{1}{|1-\bar{z}|} = \begin{cases} =\omega_1 & z \in \Gamma_{\bar{\theta}_1,\bar{\theta}_2} \\ \geq \omega_1 & |z| = 1 \end{cases}.$$

Since, $\lambda_1^* = \lambda_1$ ([5,Утверждение 4.3]) we have $\theta_1 = \theta_2$, and so $s(\lambda_1) = \Gamma_{\theta_0}$. Let us consider the following function

(6)
$$\varphi(z) = V^{\lambda_1}(z) + \ln \frac{1}{|1-z|} + 2g_{\theta_0}(z,\infty) - g_{\theta_0}(z,1).$$

 φ is harmonic on $\bar{C} \setminus \Gamma_{\theta_0}$, and is constant on Γ_{θ_0} ([5, Teopema 4.4]) $\varphi(z) = \omega_1$. By maximum principle we have $\varphi(z) = \omega_1$, $z \in \bar{C}$.

When $z \to \infty$ we have

$$\omega_1 = 2\gamma_{\theta_0} - 2g_{\theta_0}(\infty, 1) = 2\gamma_{\theta_0} - g_{\theta_0}(1, \infty)$$

where γ_{θ_0} is Rabben's constant of Γ_{θ} .

Function

$$\omega(z) = V^{\lambda_1}(z) + \ln \frac{1}{|1-z|} - g_{\theta}(z,1) + 2g_{\theta}(z,\infty),$$

is superharmonic on $\bar{C} \setminus \Gamma_{\theta}$.

Again, by maximum principle we have

$$\omega(\infty) \ge \min_{z \in \Gamma_{\theta}} \omega(z).$$

Further

$$\min_{z \in \Gamma_{\theta}} \omega(z) = \min_{z \in \Gamma_{\theta}} \left(V^{\lambda_1}(z) + \ln \frac{1}{|1 - z|} \right) \ge \min_{|z| = 1} \left(V^{\lambda_1}(z) + \ln \frac{1}{|1 - z|} \right) = \omega_1 = 2\gamma_{\theta_0} - g_{\theta_0}(1, \infty).$$

Since $\omega(\infty) = 2\gamma_{\theta} - g_{\theta}(\infty, 1) = 2\gamma_{\theta} - g_{\theta}(1, \infty)$, we have

$$2\gamma_{\theta} - g_{\theta}(1, \infty) \ge 2\gamma_{\theta_0} - g_{\theta_0}(1, \infty) ,$$

and

$$\frac{d}{d\theta} \left[2\gamma_{\theta} - g_{\theta}(1, \infty) \right] = 0.$$

Let $F(z, \theta_0)$ be a conformal mapping from $\bar{C} \setminus \Gamma_{\theta_0}$ on $\{z : |z| > 1\}$, such that $F(\infty, \theta_0) = \infty$. It is easy to see that

$$F(z, \theta_0) = \frac{z + 1 + \sqrt{z^2 - 2z\cos\theta_0 + 1}}{2\cos\frac{\theta_0}{2}},$$

and so

(7)
$$g_{\theta_0}(z,\infty) = \ln \left| \frac{z+1+\sqrt{z^2-2z\cos\theta_0+1}}{2\cos\frac{\theta_0}{2}} \right|$$

and

(8)
$$g_{\theta_0}(z,1) = \ln \left| \frac{1 - F(1,\theta_0)F(z,\theta_0)}{F(z,\theta_0) - F(1,\theta_0)} \right|.$$

From (7) and (8) we have

$$\gamma_{\theta} = \ln \frac{1}{\cos \frac{\theta}{2}},$$

and

(9)
$$2\gamma_{\theta} - g_{\theta}(1, \infty) = \ln \frac{1}{\cos \frac{\theta}{2}(1 + \sin \frac{\theta}{2})}.$$

From (9), we see that θ_0 is solution of the equation

$$2\sin^2\frac{\theta}{2} + \sin\frac{\theta}{2} - 1 = 0.$$

Hence

$$\theta_0 = \frac{\pi}{3}$$
 and $\omega_1 = \ln \frac{4}{3\sqrt{3}}$.

From (6), (7) and (8), we have

(10)
$$V^{\lambda_1}(z) + \ln \frac{1}{|1-z|} - \omega_1 = \ln \left| \frac{(z+1+\sqrt{z^2-z+1})(z-2+\sqrt{z^2-z+1})^2}{3\sqrt{3}(z+\sqrt{z^2-z+1})^2} \right|$$

Proof of Gonchar-Rahmanov Theorem:

Let $\pi_n = \pi_n(f) = \frac{p_n}{q_n}$, $\deg p_n = n$, $\deg q_n = n$. From (2) we have that $\frac{(q_n f - p_n)(z)}{z^{2n+1}} \in H(U)$. By the Caushy integral formula it follows that

$$Q(z)\frac{(q_nf-p_n)(z)}{z^{2n+1}} = \frac{1}{2\pi i} \int_{AU} \frac{(q_nf-p_n)(t)}{t^{2n+1}} \frac{1}{t-z} dt, \ z \in U, \ \text{ where } Q(z) \in P_n.$$

So we have

(11)
$$(f - \pi_n)(z) = \frac{1}{2\pi i} \int_{\partial U} \frac{z^{2n+1}}{t^{2n+1}} \frac{(Qq_n)(t)}{(Qq_n)(z)} \frac{f(t) dt}{t-z} .$$

Now, for $||f||_{\partial U} = M$, $\rho(z, \partial U) = \min_{t \in \partial U} |t - z|$, we see that

(12)
$$|(f - \pi_n)(z)| \le \frac{M}{\rho(z, \partial U)} |z|^{2n+1} \frac{||q_n Q||_{\partial U}}{|(q_n Q)(z)|}.$$

Let ν_n and μ_n are measures associated, respectively, with polynomials Q and q_n ; (i.e., if $P_n(z) = \prod_{k=1}^n (z-z_k)$, then measure associated with polynomial P_n , μ_n , is given by $\mu_n = \frac{1}{n} \sum_{k=1}^n \delta(z_k)$, where $\delta(z_k)$ is the Dirac measure concentrated at z_k ,

given by $\mu_n = \frac{1}{n} \sum_{k=1}^{n} v(z_k)$, where $v(z_k)$ is the Dirac measure k = 1, 2, ..., n). From (12) we have

$$(13) \frac{1}{n} \ln |(f - \pi_n)(z)| \le 2 \ln |z| + (V^{\nu_n} + V^{\mu_n})(z) - \min_{t \in \partial U} (V^{\nu_n} + V^{\mu_n})(t) + o(1),$$

Let Q be such that $s(\nu_n) \subset \partial U$ and $s(\mu_n) \subset C \setminus U$, $n \in \Lambda \subset N$.

Let μ'_n be measure associated with μ_n on ∂U_1 as in ([4, 5]), i. e. $(V^{\mu'_n} - V^{\mu_n}(z) = const$, $z \in U_1$; from (13) it follows

(14)
$$\frac{1}{n}\ln|(f-\pi_n)(z)| \leq 2\ln|z| + \left(V^{\nu_n} + V^{\mu'_n}\right)(z) - \min_{t \in \partial U} \left(V^{\nu_n} + V^{\mu'_n}\right)(t) + o(1),$$

$$n \to \infty, \ n \in \Lambda, \ z \in U.$$

Let Λ_1 be a subsequence of Λ , such that

$$\overline{\lim_{n\in\Lambda}}\,\frac{1}{n}\ln|(f-\pi_n)(z)|=\lim_{n\in\Lambda_1(z)}\frac{1}{n}\ln|(f-\pi_n)(z)|.$$

Further, let Λ_2 be a subsequence of Λ_1 , such that $\mu'_n \to \mu$ and $\nu_n \to \nu$, where μ and ν are unit measures on ∂U . From [4, 5], we have

(15)
$$\lim_{n \in \Lambda_{2}(z)} \frac{1}{n} \ln |(f - \pi_{n})(z)| \leq 2 \ln |z| + (V^{\nu_{n}} + V^{\mu_{n}})(z) - \min_{t \in \partial U} (V^{\nu_{n}} + V^{\mu_{n}})(t), \quad z \in U.$$

Set $\tilde{\mu}(\tilde{e}) = \mu(e)$, where $\tilde{e} = \frac{1}{e}$, and e is a Borel subset of ∂U . For $z \in U$

(16)
$$2\ln|z| + (V^{\nu} + V^{\mu})(z) - \min_{t \in \partial U} (V^{\nu} + V^{\mu})(t) = (V^{\tilde{\nu}} + V^{\tilde{\mu}})(\frac{1}{z}) - \min_{t \in \partial U} (V^{\tilde{\nu}} + V^{\tilde{\mu}})(\frac{1}{t}).$$

Set $\tilde{\nu} = \int \lambda_t d\tilde{\mu}(t)$, where λ_t is measure on ∂U as in [5]. For $z \in U$, we have

(17)
$$(V^{\tilde{\nu}} + V^{\tilde{\mu}})(\frac{1}{z}) = \int (V^{\lambda_t} + V^{\delta_t})(\frac{1}{z}) d\tilde{\mu}(t),$$

and

(18)
$$\min_{\|z\|=1} \left(V^{\tilde{\nu}} + V^{\tilde{\mu}} \right) \left(\frac{1}{z} \right) = \min_{\|z\|=1} \int \left(V^{\lambda_t} + V^{\delta_t} \right) \left(\frac{1}{z} \right) d\tilde{\mu}(t) \ge \int \min_{\|z\|=1} \left(V^{\lambda_t} + V^{\delta_t} \right) \left(\frac{1}{z} \right) d\tilde{\mu}(t).$$

From (17) and (18) we have

$$(V^{\tilde{\nu}} + V^{\tilde{\mu}}) \left(\frac{1}{z}\right) - \min_{|t|=1} \left(V^{\tilde{\nu}} + V^{\tilde{\mu}}\right) \left(\frac{1}{t}\right) \le$$

$$\int \left[\left(V^{\lambda_t} + V^{\delta_t}\right) \left(\frac{1}{z}\right) - \min_{|u|=1} \left(V^{\lambda_t} + V^{\delta_t}\right) \left(\frac{1}{u}\right) \right] d\tilde{\mu}(t) \le$$

$$(V^{\lambda_{\xi}} + V^{\delta_{\xi}}) \left(\frac{1}{z}\right) - \min_{|t|=1} \left(V^{\lambda_{\xi}} + V^{\delta_{\xi}}\right) \left(\frac{1}{t}\right), \quad |\xi| = 1, \quad \arg \xi = \arg \frac{1}{z}.$$

From (16) and (19), we have

(20)
$$\overline{\lim}_{n\in\Lambda} \frac{1}{n} \ln |(f-\pi_n)(z)| \leq \left(V^{\lambda_{\xi}} + V^{\delta_{\xi}}\right) \left(\frac{1}{z}\right) - \min_{|t|=1} \left(V^{\lambda_{\xi}} + V^{\delta_{\xi}}\right) \left(\frac{1}{t}\right).$$

From (10) and (20) we have

(21)
$$\lim_{n \in \Lambda} \frac{1}{n} \ln |(f - \pi_n)(z)| \le$$

$$\ln \left| \frac{\left(\frac{\xi}{z} + 1 + \sqrt{(\frac{\xi}{z})^2 - \frac{\xi}{z} + 1}\right) \left(\frac{\xi}{z} - 2 + \sqrt{(\frac{\xi}{z})^2 - \frac{\xi}{z} + 1}\right)^2}{3\sqrt{3} \left(\frac{\xi}{z} + \sqrt{(\frac{\xi}{z})^2 - \frac{\xi}{z} + 1}\right)^2} \right|.$$

It is easy to see that the right hand side in (21) is < 0, for |z| < r, where r is defined by the equation

$$2g_{\frac{\pi}{3}}(r,0) - g_{\frac{\pi}{3}}(r,1) = 0.$$

The proof is complete.

REFERENCES

- [1] Бейкер Д., Грейвс-Моррис П., Аппроксимации Паде, "Мир" Москва 1986.
- [2] Гончар А. А., О равномерной сходимости диагональных апроксимаций Паде, Матем. сб., (1982), т. 118(160).
- [3] Голузин Г. М., Геометрическая теория функций комплексного переменого, М. Наука, 1966.
- [4] Ландкоф Н. Ц., Основы современной теории потенциала, М. Наука, 1966.
- [5] Никишин Е. М., Сорокин В. Н., Рациональные аппроксимации и ортогональность, М. Наука, 1988.
- [6] Рахманов Е. А., О сходимости аппроксимаций Паде в классах голоморфных функций, Матем. сб., (1980), т. 112 (154).

Prirodnomatematički fakultet, Matematika 38 000 Priština, Yugoslavia