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ON LEVEL SETS OF BERNSTEIN-BEZIER OPERATORS
LiuBisa M. Kocié aAND DusaN M. MILOSEVIC

ABSTRACT. The problem of visualization of Bernsiein-Bézier polynomial op-
erators defined on the set of continuous functions f : T'— R where T is a trianguler
domain from R?, is considered. A method of level-lines is suggesled as a satisfaclory
solution. The corresponding numerical algorithm is described and illusirated with
several examples.

1. Introduction. Let the operator B : F' — ® map an arbitrary nonempty

set F in the set @ of functions ¢ : D(C R?) — R. Then, the collection of subsets
{L;}jes from D, such that n € L; implies ¢(u) = Cj, where {C}} is an increasing
real sequence, is called the level-sets of the operator B on the domain D. Tipically,
the index set .J is the set of natural numbers.

The problem of determining the level-sets of polynomial operators, i.e. when F
is a polynomial of dimension d is one of casier problems. In this case, the Bernstein-
Bézier operator on the simplex domain, seems to be a natural approach. It turns
that even such simple operator may have the level-sets which is hard to describe
exactly. In this case, even for d = 2 or 3 the numerical solution is inavoidable. In
the same time, two particular cases of two- and tree-dimensional operators are the
most important in applications, so the problem of making an efficient algorithm
for extracting level-lines (d = 2) or level-surfaces (d = 3), from the control data,
attracts attention and becomes very current [1], [2], [3], [10].

The subject of this paper is to construct the level-lines (also called contour
lines) of Bernstein-Bézier operator defined on an arbitrary triangular domain 7" =
(TIJ TE: T3) by

(1) Bn(f,1) = Z b%k(t)fijk’ t=(w,v,w) €T,

i+jtk=n
where b} (t) = (Jk)u"vjwk are Bernstein-Bézier basis polynomials of barycentric
coordinates u,v,w of the point { with respect to the triangular domain T" and
Fie = f(5,2,5),i+i+k = n, are %(n + 1)(n + 2) values of the function f,

ninln
defined on 7', that control the polynomial B,. The role of the operator B,, in
theoretical as well as in practical considerations is well known, [3]. As far as the
applications is concerning, it is enough to mention Computer Aided Geometric
Design and Data Visualization. In both topics, the operator B, is applied for

construction the Bernstein-Bézier triangular patches and their compositions. These
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applications assume very precise representation of the particular patch at the given
graphical medium.

According to the current literature, there are tree basic methods for patch
representation: 1. Colored model, 2. Wire-frame model and 3. Map of level-lines.

|
The wire-frame method uses the visualization of the perspective look of a rep-

resentative set of lines on the surface being displayed. The most {requently, these |
lines are images of some regular mesh in the domain of the function. The colored |
model obtains by the wire-frame model, during the process called rendering. It ‘
looks very nice, but the value of such a model, from the point of view of the scien- ‘
tific data conveying, is not very high. According to the authors’ opinion, the third
model, level-line model is at least ol equal value as the first one and, in some cases
it is even superior. For example, the monotonicity, convexity, continuity, differen- w
tiability, the existence of saddle points, locations of extrema and gradient intensity
are some elements that can be read ofl [rom the level-line map more easier then
from a wire-frame or colored model. The advantage of the first two models is that
they can represent a surface in its "natural” viewing and the visual information |
obtained from these models is the syntetic one. On the other hand, level-lines give
mainly an analytic information. Besides, the method of level-lines can be used as
a specific wire-[rame model, by simple showing them in perspective projection. An
additional importance of the level-line model hides in the possibility of using the
similar technique for visualization of 4D surfaces [1], [2]. Level-lines are broadly ap-
plied in the cartography, meteorology, crystollography, geology, medicine (computer
tomography) etc. For an application in the oplimization theory see [5].

2. Algorithm. The algorithm is based on the improved ”implicit” method
[4], [9] combined with a special method of searching for an initial starting values.
In fact, we are solving the equation

(2) Bn(f}t):CJ tET:
where By, defined by (1), is a polynomial in barycentric coordinates

1
U = A(T)A(t Tl Tg), ’U:—A(a‘f,Tl,Tg), w:lﬁuhv,

A(T)

where A(T) = A(T1,T2,Ts) is the area of the triangle with vertices at 77, Ty and T5.
Every nondegenerate triangle 7' can be affinely transformed into the unit triangle
To = ((0,0),(0,1), (1,0)), which simplifies the mathematics without lost of general-
ity. In this case, the Descartes coordinates are given by the linear system

u=l—-z—y, v=2z, w=y,

so that the basis polynomials at the triangular domain Ty are given by
n i

(3) b?fk(x: y) = (Uk) (1 -z y)l‘z'j k! ($1 y) € TD:

where (é;.‘k) = ;Gn"T’ i+Jj+k=n. So, (2) gets the form

(4) Z (n )(1 —r— y)il‘jykfi.j,k =C, (z,y) €Ty, .‘

i+j+k=n Uk
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(5) B(z,y) =C, (2,9) €To.

Equation (5) gives an implicit relationship between = and y from 7. The prob-
lem is construction of the locus of point (z, UP that satisfies (5) for a given C'. The
nature of this problem is much more particular then of the problem considered in
[4] and [9]. First of all, the function B(x,y) in (5), is a Bernstein-Bézier polynomial
which is known to sat}sfy the simple recursive relation. Secondly, the domain that
contains the level-lines is known. It is the triangular domain Tp. Finally, using the
convex hull property

B(z,y) € conv{fij}itjtk=n,
it follows that (5) has no solutions for C' ¢ [mq, ms], where m; = min{ fi;z}, ms =
max{fijr}. Tipically, C € {C;}, Cr=mi+ HF(mz—my), r=0,---, M, where

M is a natural number. The bigger the m, the more solutions the equation (5) will
have, and the number of level-lines will be greater.

The used method is an improved version of the method from [4]. Tt is based
on reduction of (5) on the initial value problem

Be(z,y)

(©) y’:_JE"y(-?'Usll)7

(.’H[), yG) = 110:

B; and By being partial derivatives of the function B. If By(z,y) = 0, for some
(z,y), the reciprocal problem

By(z,y)
[T, o i .
(7) = TB(a,y oW ED

is considered. Note that the polynomial has no singular points, i.e. Bs(z,y) and
By(z,y) can not vanish at the same time. This makes use of the known numeri-

cal algorithms for solving differential equation (6) and (7) possible. Our sclution
nvolves the Runge-Kuita method of the fourth order.

During the realization, two problems arcse: 1. Evaluation of derivatives B,
and By in eflicient and numerically stable way; 2. Estimation of the initial value

(zo, yo).
The first problem is solved by the using of de Casteljau algorithm

Pli() =fijr, i+j+k=n
. 1 T
P:_','R(t) ’U‘P::!-ij k(t)+vpzjj1 L(t)+wpi,r3 ,%-*—1()
=10 e, B i+j+k=n—r

and the formula for m—th directional derivative, in the direction I = (11,2, 13)

81” n! n—r
8£m (fsi) = Z Pt;nk (t)br.gk(l)’ te T7

(n — m)!
i+j+k=m
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which in the case of the first order, reduces on [3]

a — n n—
EEBn(f: t) = n(liPjse" + L Pfho + la Py ).

Specifically, if the directions are parallel with z—axes and y—axes, one gets
—1 —1 - _
Be(z,y) = n(Poo; — Plog )i Bylz,y) = ”(Pr?ml - PIHUDI)'

As far as the estimation of the initial point {; = (o, yo) is concerning, two cases
oceur: a) ig € 8T — the initial point lies on the contour of the triangle domain Tp;
b) tg € int(Tp) — the initial point is inside the triangle.

Determination of the point {y performs in these two cases in two different ways.

In the first one, the roots of the algebraic equation
B,(f,1))-C=DB,(f-C,$)=0, t=(u,v,w)€E Ty,

are determined for v = 0, v = 0 and w = 0, which means that each side of the |
triangle Ty yields one equation. So, the problem reduces on the location of the |
zeroes of the Bernstein polynomial ‘

Pn(z) = gﬂ- C’) i (l—-2)* =z €[0,1],

which performs in two stages. Firstly, the zeroes are isolated using the subdivision
algorithm with the middle subdivision point, which applies recursively as far as
the root is located within the given tolerance e. Here, the variation diminishing
property and the convex hull property are used. In the second stage, the root is
corrected by the modified regula falsi algorithm [8]. In this case, the contour of the
triangle Tp 1s intersected by the level-line twice at least.

In the case that the initial point {g is inside Ty, the whole level-line lies inside
the triangle Ty too, and the method of scanning along the directions parallel to the
sides of the triangle is applied. For example, one sets £ = a, and then solves the

equations
Bﬂ(“ly)ic:[)ﬁ (aly)eTOI

numerically. Suppose thalt y = yg is the satisfactory approximate solution. Then
the point (zo,y0) = (a, o) is taken to be an initial point.

3. Examples. The algorithm is tested through many examples and three of
them will be presented here. The arrangement of the control points of n—th order
Bernstein-Bézier polynomial, is accepted to be

Pyon

Pooo -+ Pono

The step in the Runge-Kutta method in all examples is h = 0.01, which ensures the
level-lines to be smooth enough width the relatively short computer execution time
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Example 1. For the control points

60
20 56
62 31 82

89 23 43 45
12 37 26 63 34

the perspective projection of the graph of the corresponding 4-th degree Bernstein-
Bézier polynomial is given in Iigure 1.A, while the corresponding level-line map
is given in Figure 1.B. As it can be seen, the level-line map faithiully reflects the
global properties of the triangular patch from the Figure 1.A such as its domains of
monotonicily, extremal and saddle points. The complete running time (including
displaying) at 20 MIIz PC-386 computer is 37.51 sec.

Example 2. The control points

0

0 0

0 30 0

0 30 30 0 ’
0 30 30 30 0
0 0 0 0 00

defines the polynomial of order n = 5, width global maximum in the triangular

domain T (Tigure 2.A). The information about maxima as well as the behaviour of
the graph on the sides of the triangle 7", and even the gradienl can be easily read
off, from the map given in I'igure 2.3. The running time is shown to be 156.87 sec.

Example 3. In this example we follow the behaviour of the level-line map in
depending of altering one conlrol point. Figure 3.A shows the map of the level-lines
of the polynomial patch given by the control points that are given in the lelt matrix
below, while Tigure 3.B displays the level-lines of the polynomial defined by the
control points in the right matrix

0 0

50 0 100 0

0 0 0 0 0 0

0 0 100 0 0 0 100 0O
0o 0 0 0 0 00 0 00

At the Figure 3.A one of the level-lines has a cusp (a non-differentiobility point)
which happens to exist for the 4-th degree patch. In Figure 3.B, an isolated maxima
occurs, being circumscribed by an oval curve in the middle of the triangle 1. The
cxeculing time is 32.19 sec, for Figure 3.A, and 39.88 sec, for Tigure 3.1.

4. Conclusion and open questions. The algorithm being cxplained is
rather different from other known algorithms [3], [6], [7?, [10]. Algorithms from [6]

“and [7] uses proximalions of the initial patch of n-th order, by the palch of (n—1)-th

order, using the degree reduction and subdivision algorithm. Tt is not quite clear il
the degree reduction always payed off.
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In [3], an cfficient algorithm is proposed, but only for quadratic polynomials.
This method is lurther developed in [10], now based on the rational Beziér segments.

The algorithm presented here, constructs the level-lines fastly and efficiently,
with an error which can be made arbitrarily small by adjusting the step in the
Runge-Kuita method. Then, it can be applied on the polynomial of an arbilrary
order as well as on the surface obtained by the composition of triangnlar fragments.

Questions, like error analysis and adjusting the length of the step in the Runge-
Kutta method are the subjects of the next paper, which is in preparation.

REFERENCES

[1] R.E.BarNuILL, A Survey of the Representation and Design of Surfaces, IEEE
Computer Graphics and applications, 3 (1983), no. 7, 9-16.

[2] R.E.BARNHILL, Surfaces in compuler aided geomeiric design: A survey with
new results, 2 (1985), no. 1-3, 1-17.

[3] G. Famin, Triangular Bernstein-Bézier patches, CAGD 3 (1986), 83-127.

[4] La.M. Kocié, Koridéenje diferencijalnih jednacine za nalaZenje grafika impli-
cilnih funkeija, Diplomski rad, Elektronski [akultet Nig 1975.

[5] Li.AL Koci¢, A graphical method for scparating exirema of implicil funclion,
Wiss., Z. T1L Ilmenau 35 (1989), no.G, 161-1064.

[6] C. PETERSEN, Adaplive conlouring of three dimensional surfaces, Computer
Aided Geometric Design 1 (1984), 61-74.

[7] C. PeTERSEN, B. PiPER, A. WORSEY, Adaptive contouring of a trivariale

interpolant, G.Farin. ed., Geometric Modeling, SIAM, Philadelphia, PA (1986).
[8] T. \W. SEDERBERG AND S. R. PARRY, Comparison of three curve interscelion
algorithms, Computer—aided design, 18 (1986), no. 1, 58-63.
[9] D.DJ.Todi¢, Li.M. Kocié, O jednom melodu za_crianje ekvipotencijalnih
linija u ravni, Elekirostatika "84, Nis, 1984, 25.1-25.5.
[10] A.J.WorsEY, G. FariN, Confuring a bivariale quadratic polynomial over Iri-
angle, CAGD, 7 (1990) no. 1-4, 337-352.

Departement of Mathematics
Faculty of Elecironic Enginecring
p.o.Box 73, 18000 Nis
Yugoslavia




PSS 44(
AN

cigs 1A Fig. 1.B

Ay, Ly -\\w‘-:;g;;:,ijlf
RS ]
: AW AL
%ﬁéﬁ;&éeﬁ#ﬂ#‘% )
S S SV,

S

Fig. 3.A ' Fig. 3.B




	1.pdf (p.1-30)
	2.pdf (p.31-60)
	3.pdf (p.61-90)
	4.pdf (p.91-122)
	5.pdf (p.123-152)
	6.pdf (p.153-182)
	7.pdf (p.183-196)



