FILOMAT-20, Niš, September 26-28, 1991

\mathcal{L}_n -SEMIGROUPS

Blagoje Stamenković

Abstract. E.I. III ymos [3] and N. Kimura, T. Tamura and R. Merkel [2] considered λ -semigroups, i.e. semigroups in which every subsemigroup is a left ideal. S. Bogdanović and the author treated in [1] λ_n -semigroups, i.e. semigroups in which $S^n A = A^{n+1}$

for every subsemigroup A of S. In this paper we generalize the results from [1]. We prove that S is an \mathfrak{L}_n -semigroup if and only if S is a retractive extension of a right zero band by an \mathfrak{L}_n -nil-semigroup (Th. 3,4).

DEFINITION 1. A semigroup S is an \mathcal{L}_n -semigroup if for every its subsemigroup A the following condition holds:

 $(2) S^n A \subseteq A .$

Lemma 1. A semigroup S is an \mathfrak{L}_n -semigroup if and only if ($\forall a \in S$) $S^n a \subseteq \langle a \rangle$.

PROOF. Let S be an \mathfrak{L}_n -semigroup. Then $S^n a \subset S^n \langle a \rangle \subset \langle a \rangle$

for all $a \in S$, i.e. (2) holds.

Conversely, let A be a subsemigroup of S. Then for $a \in A$ we have that $S^n a \subseteq \langle a \rangle$, and thus $S^n A \subseteq A$. Therefore, S is an \mathfrak{L}_n -semigroup. \square

LEMMA 2. Every λ_n -semigroup is an \mathcal{L}_n -semigroup.

PROOF. Follows immediately.

The converse of Lemma 2. is not true, for example, the semigroup $\langle x \rangle = \{x, x^2, x^3, x^4, x^5 = x^6\}$ is an \mathcal{L}_2 -semigroup. But it is not a λ_2 -semigroup, since for $\langle x^2 \rangle$ the condition (1) not holds.

Supported by Grant 0401A of Science Fund of Serbia through Math. Inst. SANU 1991 Mathematics subject classification. Primary: 20M10

Lemma 3. Every subsemigroup and every homomorphic image of an \mathcal{L}_n -semigroup is an \mathcal{L}_n -semigroup.

PROOF. Follows immediately.

LEMMA 4. Let S be an \mathfrak{L}_n -semigroup. Then

- (i) S is periodic;
- (ii) E(S) is a right zero band;
- (iii) E(S) is an ideal of S;
- (iv) Reg(S) = E(S).

PROOF. (i). Let $x \in S$. Then by hypothesis and by (2) we have that $x^{2n+1} = x^{n-1}x^xx^2 \in S^nx^2 \subset \langle x^2 \rangle$.

Thus, S is periodic.

(ii). Let $e \in E(S)$. Then by (3) we have that $S^n e \subseteq \langle e \rangle = e$, whence $f^n e = f e = e$ for all $e, f \in E(S)$. Therefore, E(S) is a right zero band.

(iii). Let $x \in S$, $e \in E(S)$. Then by (3) we have that $xe = xe^{n-1}e = e$. Hence, E(S) is a left ideal of S. Since

$$(ex)^2 = exex = (e^{n-1}xe)x = ex \in E(S)$$
,

we then have that E(S) is, also, a right ideal of S. Thus E(S) is an ideal of S.

(iv). Let $a \in Reg(S)$. Then a = axa, for some $x \in S$, so by (iii) it follows that $a = (ax)a \in E(S) \cdot S \subseteq E(S)$. Thus $Reg(S) \subseteq E(S)$. The opposite inclusion also holds. Therefore, Reg(S) = E(S). \square

LEMMA 5. Let S be an \mathfrak{L}_n -semigroup. Then

(i) if
$$n = 2k - 1$$
, then for every $x \in S$ it is $\langle x \rangle = \{x, x^2, \dots, x^m = x^{m+1}\}$

for some $m, 1 \le m \le 2k+1$.

(ii) if
$$n = 2k$$
, then for every $x \in S$ it is $\langle x \rangle = \{x, x^2, \dots, x^m = x^{m+1}\}$

for some m, 1 < m < 2k + 3.

PROOF. By Lemma 4. (i) we have that S is periodic. By Lemma 4. (iii), $\langle x \rangle$ has a zero for every $x \in S$. Hence

$$\langle x \rangle = \{x, x^2, \dots, x^m = x^{m+1}\}$$

for some $m \in \mathbb{Z}^+$. We have the following two cases:

(i). If n = 2k - 1 and m > 2k + 1, then

$$\langle x \rangle^{2k-1} x^2 \not\subseteq \langle x^2 \rangle$$
,

since $x^{2k-1} \notin \langle x^2 \rangle = \{x^2, x^4, \dots, x^m = x^{m+1}\}$, which is a contradiction.

(ii). If n = 2k and m > 2k + 3, then

$$\langle x \rangle^{2k} x^2 \not\subseteq \langle x^2 \rangle$$
,

since $x^{2k+3} \notin \langle x^2 \rangle = \{x^2, x^4, \dots, x^m = x^{m+1}\}$, which is not possible. \square

Theorem 1. Let S be a cyclic semigroup. Then the following conditions are equivalent:

- (i) S is an \mathfrak{L}_{2k} -semigroup;
- (ii) S is an \mathfrak{L}_{2k+1} -semigroup;
- (iii) S is a (2k+3)-nilpotent semigroup.

PROOF. (i) \Longrightarrow (iii). Let $\langle x \rangle$ be an \mathcal{L}_{2k} -semigroup. Then by Lemma 5. x^{2k+3} is a zero of $\langle x \rangle$. Thus, $\langle x \rangle^{2n+3} = 0$.

- (ii) \implies (iii). This implication is similar to the (i) \implies (iii).
- (iii) \Longrightarrow (i). Let $S = \langle x \rangle$ and $S^{2k+3} = 0$. Then $x^{2k+3} = 0$. It is easy to verify that $S^{2k} a \subseteq \langle a \rangle$ holds for all $a \in S$. Thus, S is an \mathfrak{L}_{2k} -semigroup.

 $(iii) \implies (ii)$. Similarly as $(iii) \implies (i)$. \square

Theorem 2. Let S be a cyclic semigroup. Then S is an \mathfrak{L}_1 -semigroup if and only if $S^3=0$.

PROOF. Follows by Lemma 5.

Theorem 3. The following conditions on a semigroup S are equivalent:

- (i) S is an \mathfrak{L}_{2k} -semigroup;
- (ii) $(\forall x_1, x_2, \dots, x_{2k}, y \in S) \ x_1 x_2 \cdots x_{2k} y \in \{y^2, y^3, \dots, y^{2k+3}\};$
- (iii) S is a retractive extension of a right zero band by an \mathfrak{L}_{2k} -nil-semigroup.

PROOF. (i) \Longrightarrow (ii). Let S be an \mathcal{L}_{2k} -semigroup. Then by Lemmas 1. and 5. we have that

$$x_1x_2\cdots x_{2k}y \in \{y, y^2, \dots, y^{2k+3} = y^{2k+4}\}$$

for all $x_1, x_2, \ldots, x_{2k}, y \in S$. If $x_1x_2 \cdots x_{2k}y = y$, then

$$(x_1x_2\cdots x_{2k})^{2k+3}y = (x_1x_2\cdots x_{2k})^{2k+2}(x_1x_2\cdots x_{2k})y$$

$$= (x_1x_2\cdots x_{2k})^{2k+2}y = \cdots$$

$$= (x_1x_2\cdots x_{2k})y$$

$$= y \in \langle y \rangle \cap E(S) ,$$

since, by Lemma 4. (iii),

$$(x_1x_2\cdots x_{2k})^{2k+3}y\in E(S)\cdot S\subseteq E(S).$$

Hence, $y = y^{2k+3}$, and so the condition (ii) holds.

- (ii) \Longrightarrow (i). Let A be a subsemigroup of S. Then for every $y \in A$, $x_1x_2 \cdots x_{2k}y \in \langle y \rangle \subseteq A$. Thus $S^{2k}A \subseteq A$, i.e. S is an \mathfrak{L}_{2k} -semigroup.
- (i) \Longrightarrow (iii). Let S be an \mathfrak{L}_{2k} -semigroup. Then by Lemma 4. E(S) is a right zero band and it is an ideal of S. The mapping $\varphi: S \to E(S)$ defined by $\varphi(x) = x^{2k+3}$ is a retraction. Indeed,

$$\varphi(xy) = (xy)^{2k+3}$$

$$= ((xy)^{2k+2}x)y$$

$$= y^{2k+3}, \quad \text{since } ((xy)^{2k+2}x)y \in \langle y \rangle \cap E(S)$$

$$= \varphi(y)$$

 $= \varphi(x)\varphi(y)$, since E(S) is a left zero band

and

$$\varphi^2(x) = \varphi(x)$$
.

It remains to prove that the Rees factor semigroup V = S/E(S) is an \mathcal{L}_{2k} -nil-semigroup. It is clear that V is an \mathcal{L}_{2k} -semigroup. For every $x \in S - E(S)$ there exists $n \in \mathbb{Z}^+$ such that $x^n \in E(S)$, so V is a nil-semigroup.

(iii) \Longrightarrow (i). Let A be a subsemigroup of S, let $x_1, x_2, \ldots, x_{2k} \in S$ and let $y \in A$. Then

$$x_1x_2\cdots x_{2k}y\in E(S)$$
 or $x_1x_2\cdots x_{2k}y\notin E(S)$.

If $x_1x_2\cdots x_{2k}y\in E(S)$, then

$$x_1x_2\cdots x_{2k}y=\varphi(x_1x_2\cdots x_{2k}y)$$
, since φ is a retraction
$$=\varphi(x_1)\varphi(x_2)\cdots\varphi(x_{2k})\varphi(y)$$
$$=\varphi(y)$$
, since $E(S)$ is a right zero band.

Since there exists $n \in \mathbb{Z}^+$ such that $y^n \in E(S)$, then $\varphi(y) = (\varphi(y))^n = \varphi(y^n) = y^n \in \langle y \rangle \subseteq A$. Therefore, in this case

$$x_1x_2\cdots x_{2k}y\in A$$
.

If $x_1x_2\cdots x_{2k}y\notin E(S)$, then $x_1x_2\cdots x_{2k}y\in \langle y\rangle\subseteq A$, since S/E(S) is an \mathcal{L}_{2k} -semigroup. \square

By analogy with the Theorem 3. we have the following

Theorem 4. The following conditions on a semigroup S are equivalent:

(i) S is an \mathfrak{L}_{2k+1} -semigroup;

(ii) $(\forall x_1, x_2, \dots, x_{2k+1}, y \in S)$ $x_1 x_2 \cdots x_{2k+1} y \in \{y^2, y^3, \dots, y^{2k+3}\};$

(iii) S is a retractive extension of a right zero band by an \mathfrak{L}_{2k+1} -nil-semigroup. \square

REFERENCES

- [1] S.Bogdanović and B.Stamenković, Semigroups in which S^{n+1} is a semilattice of right groups (Inflations of a semilattice of right groups), Note di Matematica Vol. VIII 1, (1983), 155-172.
- [2] N.KIMURA, T.TAMURA AND R.MERKEL, Semigroups in which all subsemigroups are left ideals, Canad. J. Math. 17, 1965, 52-62.
- [3] Е.Г.Шутов, Полугруппы с идеальными подполугруппами, Мат. Сб., 57 (99) 2, 1962, 179-186.

Gradjevinski fakultet, Beogradska 14, 18000 Niš, Yugoslavia