FILOMAT-20, Niš, September 26-28, 1991

SOME CONGRUENCES ON A π-REGULAR SEMIGROUP

PETAR V. PROTIĆ AND MILAN BOŽINOVIĆ

ABSTRACT. The group congruences on an eventually regular (π -regular) semigroups is described in [5]. In this paper, by the method from [5], we give some new descriptions for group congruences. Also, we consider normal congruences on a semigroup which is generated by all the idempotents from a π -regular semigroup. If S is a regular semigroup and idempotents of S form a left zero band, then we define the normal congruence pair and by it we describe some congruences. For the related results see [7].

1. Introduction

A semigroup S is π -regular (eventually regular) if for every $a \in S$ there exists a positive integer m such that $a^m \in a^m S a^m$. We shall denote by Reg(S) the set of all regular elements of S and by E(S) the set of all idempotents of S. If x is a regular element of a semigroup S, V(x) will denote the set of inverses of x. A mapping $r: S \to Reg(S)$ is defined with $r(a) = a^n$, where n is the least positive integer for which $a^n \in Reg(S)$, [8].

If \mathcal{A} is a class of semigroups, then a congruence ρ on a semigroup S is an \mathcal{A} -congruence if $S/\rho \in \mathcal{A}$.

For undefined notions and notations we refer to [3] and [6].

2. Group congruences

In this section S will be arbitrary π -regular semigroup.

A subset H of S is defined to be full if $E(S) \subseteq H$. For any subset H of S the closure $H\omega$ of H is the set $\{x \in S \mid hx \in H \text{ for some } h \in H\}$; H is said to be closed if $H\omega = H$.

A subset H of S is called *self-conjugate* if $aHa^{n-1}(a^n)' \subseteq H$ and $a^{n-1}(a^n)'Ha \subseteq H$ for all $a \in S$ and $(a^n)' \in V(a^n)$, $a^n = r(a)$, [5].

LEMMA 2.1. [5] If H is a full self-conjugate subsemigroup of an eventually regular semigroup S, then $H\omega = H$ if and only if for all $h \in H$ and $x \in S$,

Supported by Grant 0401A of Science Fund of Serbia through Math. Inst. SANU 1991 Mathematics subject classification. Primary: 20M10

 $xh \in H$ implies $x \in H$. \square

Lemma 2.2. If H is a full, self-conjugate closed subsemigroup of S, then for each $a \in S$, $(a^n)' \in V(a^n)$, $a^n = r(a)$ holds

$$\begin{array}{lll} aHa^{n-1}(a^n)'\subseteq H &\iff& aH(a^n)'a^{n-1}\subseteq H \ ,\\ a^{n-1}(a^n)'Ha\subseteq H &\iff& (a^n)'a^{n-1}Ha\subseteq H \ . \end{array}$$

PROOF. Let $aHa^{n-1}(a^n)' \subseteq H$. Since $(a^n)'a^n \in E(S) \subseteq H$, then $H(a^n)'a^{n-1}a \subseteq H$ and $a(H(a^n)'a^{n-1}a)a^{n-1}(a^n)' \subseteq H$. Since $a^n(a^n)' \in E(S)$, then $aH(a^n)'a^{n-1} \subset H$.

Conversely, let $aH(a^n)'a^{n-1} \subseteq H$. Since $a^{n-1}(a^n)'a \in E(S)$, we have $Ha^{n-1}(a^n)'a \subseteq H$ and $a(Ha^{n-1}(a^n)'a)(a^n)'a^{n-1} \subseteq H$. Since $a(a^n)'a^{n-1} \in E(S)$, then $aHa^{n-1}(a^n)' \subseteq H$.

The second part of this lemma can be proved similarly. \square

We denote with

 $\mathcal{B} = \{ H \subseteq S \mid H \text{ is a full, self-conjugate closed subsemigroup of } S \}$. Then $\mathcal{B} \neq \emptyset$ since the kernel of any group congruence on S is an element of \mathcal{B} .

Theorem 2.1. [5] If $H \in \mathcal{B}$ then

 $\beta_H = \{(a,b) \in S \times S \mid ab^{n-1}(b^n)' \in H \mid where \ (b^n)' \in V(b^n), \ b^n = r(b)\}$ is a group congruence on S. \square

If $H \in \mathcal{B}$, then $\ker \beta_H = H$. If γ is a group congruence on S, then $\beta_{\ker \gamma} = \gamma$. The mapping $H \to \beta_H$ is an inclusion preserving one-to-one correspondence of the set \mathcal{B} and the set of all group congruences on S, [5].

THEOREM 2.2. Let $H \in \mathcal{B}$, then the following statements are equivalent:

- (1) $a(b^n)'b^{n-1} \in H$ where $(b^n)' \in V(b^n)$, $b^n = r(b)$;
- (2) $b(a^m)'a^{m-1} \in H$ where $(a^m)' \in V(a^m)$, $a^m = r(a)$;
- (3) $(a^m)'a^{m-1}b \in H$ where $(a^m)' \in V(a^m)$, $a^m = r(a)$;
- (4) $(b^n)'b^{n-1}a \in H$ where $(b^n)' \in V(b^n)$, $b^n = r(b)$;
- (5) $a \beta_H b$;
- (6) $ax(b^n)'b^{n-1} \in H$ for some $x \in H$ and $(b^n)' \in V(b^n)$, $b^n = r(b)$;
- (7) $bx(a^m)'a^{m-1} \in H$ for some $x \in H$ and $(a^m)' \in V(a^m)$, $a^m = r(a)$;
- (8) $(a^m)'a^{m-1}xb \in H$ for some $x \in H$ and $(a^m)' \in V(a^m)$, $a^m = r(a)$;
- (9) $(b^n)'b^{n-1}xa \in H$ for some $x \in H$ and $(b^n)' \in V(b^n)$, $b^n = r(b)$.

PROOF. (1) \Longrightarrow (2). Let $a(b^n)'b^{n-1} \in H$. Then by Lemma 2.2. we have $(b^n)'b^{n-1}a(b^n)'b^{n-1}b \in H$ and $a(b^n)'b^{n-1}a(b^n)'b^{n-1}b(a^m)'a^{m-1} \in H$. Since H is closed we have $b(a^m)'a^{m-1} \in H$.

- (2) \Longrightarrow (3). Let $b(a^m)'a^{m-1} \in H$, then $b^{n-1}(b^n)'b(a^m)'a^{m-1}b \in H$ and since $b^{n-1}(b^n)'b \in E(S) \subseteq H$ we have $(a^m)'a^{m-1}b \in H$.
- (3) \Longrightarrow (4). If $(a^m)'a^{m-1}b \in H$, then $b(a^m)'a^{m-1}b(b^n)'b^{n-1} \in H$ and $(a^m)'a^{m-1}b(a^m)'a^{m-1}b(b^n)'b^{n-1}a \in H$, whence $(b^n)'b^{n-1}a \in H$.
- (4) \Longrightarrow (1). If $(b^n)'b^{n-1}a \in H$, then $a(b^n)'b^{n-1}a(a^m)'a^{m-1} \in H$ and since $a(a^m)'a^{m-1} \in E(S)$ and H is closed we have $a(b^n)'b^{n-1} \in H$.

- (1) \Longrightarrow (5). If $a(b^n)'b^{n-1} \in H$, then $b(a^m)'a^{m-1}a(b^n)'b^{n-1}ab^{n-1}(b^n)' \in H$. Now, by (2) $b(a^m)'a^{m-1} \in H$ and since H is closed we have $ab^{n-1}(b^n)' \in H$. Hence, $a \beta_h b$.
- (5) \Longrightarrow (1). Let $a \beta_H b$, then $a^{m-1}(a^m)'ab^{n-1}(b^n)'a \in H$ and $ba^{m-1}(a^m)'a$ $b^{n-1}(b^n)'a(b^n)'b^{n-1} \in H$. Now $ba^{m-1}(a^m)' \in H$ since β_H is symmetric and so $a(b^n)'b^{n-1} \in H$.
- (6) \Longrightarrow (7). Let $ax(b^n)'b^{n-1} \in H$. Since $x(b^n)'b^{n-1}bx \in H$ and since $ax(b^n)'b^{n-1}bx(a^m)'a^{m-1} \in H$ we have $bx(a^m)'a^{m-1} \in H$.
- (7) \Longrightarrow (8). If $bx(a^m)'a^{m-1} \in H$ then $bx(a^m)'a^{m-1}x \in H$ and $b^{n-1}(b^n)'bx(a^m)'a^{m-1}xb \in H$, so $(a^m)'a^{m-1}xb \in H$.
- (8) \Longrightarrow (9). Let $(a^m)'a^{m-1}xb \in H$. Since $xa(a^m)'a^{m-1}x \in H$ and $(b^n)'b^{n-1}xa(a^m)'a^{m-1}xb \in H$ we have $(b^n)'b^{n-1}xa \in H$.
- (9) \Longrightarrow (6). Let $(b^n)'b^{n-1}xa \in H$. Since $(b^n)'b^{n-1}xax \in H$ and $b(b^n)'b^{n-1}xax(b^n)'b^{n-1} \in H$ we have $ax(b^n)'b^{n-1} \in H$.
- (1) \Longrightarrow (9). If $a(b^n)'b^{n-1} \in H$, then $a(b^n)'b^{n-1}x \in H$ for $x \in H$ and $a^{m-1}(a^m)'a(b^n)'b^{n-1}xa \in H$, so $(b^n)'b^{n-1}xa \in H$.
- (9) \Longrightarrow (1). If $(b^n)'b^{n-1}xa \in H$, then $a(b^n)'b^{n-1}xa(a^m)'a^{m-1} \in H$. Since $xa(a^m)'a^{m-1} \in H$ we have $a(b^n)'b^{n-1} \in H$, which completes the proof. \square

The statements (1)-(9) from Theorem 2.2. are equivalent with statements (2)-(11) from Theorem 3. [5].

3. Normal congruences on a semigroup $\langle E(S) \rangle$

If S is a π -regular semigroup, then by $\langle E(S) \rangle$ we denote the subsemigroup of S generated by E(S).

Definition 3.1. Let S be a π -regular semigroup. An equivalence (congruence) ξ on the semigroup $\langle E(S) \rangle$ is a normal equivalence (congruence) if for every $x, y \in \langle E(S) \rangle$, $a \in S$ and $(a^n)' \in V(a^n)$, $a^n = r(a)$ holds

$$x \notin y \implies ax(a^n)'a^{n-1} \notin ay(a^n)'a^{n-1}$$

whenever $ax(a^n)'a^{n-1}$, $ay(a^n)'a^{n-1} \in \langle E(S) \rangle$.

If S is a π -regular semigroup and the set E(S) is a subsemigroup of S, then $ae(a^n)'a^{n-1} \in E(S) = \langle E(S) \rangle$ for each $e \in E(S)$, $a \in S$ and $(a^n)' \in V(a^n)$, $a^n = r(a)$.

Theorem 3.1. Let S be a π -regular semigroup, ξ be a normal congruence on $\langle E(S) \rangle$ and let α be the relation on $\langle E(S) \rangle$ defined with

 $(3.1) x \alpha y \iff ax(a^n)'a^{n-1} \xi ay(a^n)'a^{n-1}$

for each $a \in S$, $(a^n)' \in V(a^n)$, $a^n = r(a)$, whenever $ax(a^n)'a^{n-1}$, $ay(a^n)'a^{n-1} \in \langle E(S) \rangle$. Then the relation α is a normal equivalence on $\langle E(S) \rangle$ and $\xi \subseteq \alpha$.

PROOF. Clearly, α is an equivalence. Let $x,y\in \langle E(S)\rangle$ and x α y, then since ξ is a normal congruence we have

$$b(ax(a^n)'a^{n-1})(b^m)'b^{m-1} \notin b(ay(a^n)'a^{n-1})(b^m)'b^{m-1}$$
,

for every $b \in S$, $(b^m)' \in V(b^m)$, $b^m = r(b)$, whenever

 $b(ax(a^n)'a^{n-1})(b^m)'b^{m-1}, b(ay(a^n)'a^{n-1})(b^m)'b^{m-1} \in \langle E(S) \rangle$.

Hence, $ax(a^n)'a^{n-1} \alpha ay(a^n)'a^{n-1}$ and α is a normal equivalence on $\langle E(S) \rangle$. From $x, y \in \langle E(S) \rangle$ and $x \notin y$ it follows that $ax(a^n)'a^{n-1} \notin ay(a^n)'a^{n-1}$ and so $x \notin y$, whence $\xi \subseteq \alpha$. \square

A band B is a rectangular band if for every $e, f, g \in B$ holds efg = eg. A band B is a right regular band if for every $e, f \in B$ holds ef = fef.

Corollary 3.1. If S is a π -regular semigroup and E(S) is a rectangular band (right regular band), then α is a normal congruence on E(S).

PROOF. Let E(S) be a rectangular band, $e, f, g, h \in E(S)$ and

$$\begin{array}{ll} e\alpha = f\alpha & \Longleftrightarrow & (ae(a^n)'a^{n-1})\xi = (af(a^n)'a^{n-1})\xi \ , \\ g\alpha = h\alpha & \Longleftrightarrow & (ag(a^n)'a^{n-1})\xi = (ah(a^n)'a^{n-1})\xi \ , \end{array}$$

where $a \in S$, $(a^n)' \in V(a^n)$, $a^n = r(a)$. Since ξ is a congruence, we have

$$(3.2) \qquad (ae(a^n)'a^{n-1}ag(a^n)'a^{n-1})\xi = (af(a^n)'a^{n-1}ah(a^n)'a^{n-1})\xi$$

whence it follows that

$$(3.3) (aeg(a^n)'a^{n-1})\xi = (afh((a^n)'a^{n-1})\xi.$$

Hence, $(eg)\alpha = (fh)\alpha$, so α is a congruence on E(S).

If E(S) is a right regular band, then from (3.2) we have

$$(ae(a^n)'a^ng(a^n)'a^n(a^n)'a^{n-1})\xi = (af(a^n)'a^nh(a^n)'a^n(a^n)'a^{n-1})\xi,$$

whence it follows (3.3). \square

Theorem 3.2. Let S be a π -regular semigroup and ξ is a normal congruence on (E(S)). Then the relation τ on (E(S)) defined by:

$$x \ \tau \ y \iff (\forall z \in \langle E(S) \rangle) \ xz \ \xi \ yz$$

is a normal congruence on (E(S)) and $\xi \subseteq \tau \subseteq \alpha$, where α is defined with (3.1).

PROOF. Let $x, y \in \langle E(S) \rangle$. Then

$$x \tau y \implies (\forall z, t \in \langle E(S) \rangle) xtz \xi ytz, txz \xi tyz$$

and $xt \tau yt$, $tx \tau ty$. Hence, τ is a congruence.

Let $x \notin y$. Then $xz \notin yz$ for every $z \in \langle E(S) \rangle$ and so $x \tau y$. Hence, $\xi \subseteq \tau$. Also,

 $(3.4) x \tau y \implies x(a^n)'a^n \xi y(a^n)'a^n$

$$\implies a(x(a^n)'a^n)(a^n)'a^{n-1} \xi \ a(y(a^n)'a^n)(a^n)'a^{n-1}$$

$$(3.5) \qquad \Longrightarrow ax((a^n)'a^{n-1}\xi \ ay(a^n)'a^{n-1} \\ \Longleftrightarrow x \ \alpha \ y \ .$$

and so $\tau \subseteq \alpha$. From (3.4), (3.5) and $\xi \subseteq \tau$ we have

$$x \tau y \implies ax(a^n)'a^{n-1} \tau ay(a^n)'a^{n-1}$$

and consequently $\,\tau\,$ is a normal congruence. $\,\Box\,$

A band B is left regular if for every $e, f \in B$ holds ef = efe. A π -regular

semigroup S is π -R-unipotent if the set E(S) is a left regular band. A band B is normal if efgh = egfh for every $e, f, g, h \in B$.

Corollary 3.2. If ξ is a normal and a normal band congruence on $\langle E(S) \rangle$, where S is a π -regular semigroup, then τ is a π -R-unipotent congruence on $\langle E(S) \rangle$.

PROOF. Let ξ be a normal and a normal band congruence on $\langle E(S) \rangle$ and $A, B \in E(\langle E(S) \rangle / \tau)$. Then there exist $e, f \in E(S)$ [2,4], so that $A = e\tau$, $B = f\tau$. Now

$$AB = AB \iff (ef)\tau = (ef)\tau \iff (\forall z \in \langle E(S) \rangle)(efz)\xi = (eefz)\xi$$

$$\iff (\forall z \in \langle E(S) \rangle) (efz)\xi = (efez)\xi$$

$$\iff (ef)\tau = (efe)\tau.$$

Hence, AB = ABA and so $\langle E(S) \rangle / \tau$ is a π -R-unipotent semigroup. \square

For some similar results in a regular case we refer to [1].

4. A normal congruence pair

In this section S will be a regular semigroup and E(S) will be a left zero band.

By Definition 3.1. the congruence ξ on E(S) is normal if

$$e \ \xi \ f \iff aea' \ \xi \ afa'$$

for every $e, f \in E(S)$, $a \in S$ and $a' \in V(a)$.

DEFINITION 4.1. If K is a full, self-conjugate and closed subsemigroup on S and ξ is a normal congruence on E(S), then (ξ, K) is a normal congruence pair for S.

Theorem 4.1. If (ξ, K) is a normal congruence pair for S, then the relation $\mathcal{K}_{(\xi,K)}$ defined on S by

 $a \ \mathcal{K}_{(\xi,K)} \ b \iff (\exists a' \in V(a))(\exists b' \in V(b)) \ aa' \ \xi \ bb', \ ab' \in K$ is a congruence on S with a trace ξ and a kernel K.

PROOF. If we denote $a \delta b$ iff $aa' \xi bb'$, and $a \beta_K b$ iff $ab' \in K$, then $a \mathcal{K}_{(\xi,K)} b \iff a \delta b$, $a \beta_K b$.

By Theorem 2.1, the relation β_K is a congruence on S. Clearly, the relation δ is an equivalence relation. Let $a \delta b$, $c \in S$. Since ξ is a normal congruence we then have

$$ca(ca)'=c(aa')c'\ \xi\ c(bb')c'=cb(cb)'\ ,$$

so $ca \delta cb$. Similarly,

$$ac(ac)' = acc'a' = aa'acc'a' = aa'aa' = aa'$$

$$\xi bb' = bb'bb' = bb'bcc'b' = bcc'b' = bc(bc)',$$

so ac δ bc. Hence, δ is a congruence and also $\mathcal{K}_{(\xi,K)}$ is a congruence. Let $e, f \in E(S)$. Then

$$e \ \mathcal{K}_{(\xi,K)} f \iff (\exists e' \in V(e))(\exists f' \in V(f)) \ ee' \ \xi \ ff', \ ef' \in K \ .$$

Since E(S) is a left zero band and $E(S) \subseteq K$, we have $e \mathcal{K}_{(\xi,K)} f$ if and only if $e \xi f$ and so $\operatorname{tr} \mathcal{K}_{(\xi,K)} = \xi$.

Let $a \in \ker \mathcal{K}_{(\xi,K)}$. Then there exists $e \in E(S)$ such that $ae' \in K$ for every $e' \in V(e) = E(S)$. Now

$$ae' = aa'ae' = aa'a = a \in K$$
,

and so $\ker \mathcal{K}_{(\xi,K)} \subseteq K$. If $a \in K$, then from a = aa'a and aa' = aa'aa' we have that $a \mathcal{K}_{(\xi,K)} aa'$ and so $a \in \ker \mathcal{K}_{(\xi,K)}$. \square

Theorem 4.2. If ρ is a congruence on S, then $(tr\rho, \ker\rho)$ is a normal congruence pair for S.

PROOF. Let ρ be a congruence on S. A simple verification shows that $\ker \rho$ is a full, self-conjugate subsemigroup of S. Let $h, xh \in \ker \rho$. Then $h\rho = e\rho$, $(xh)\rho = f\rho$ for some $e, f \in E(S)$. Since E(S) is a left zero band we have

f
ho = (xh)
ho = x
ho h
ho = (xx'x)
ho e
ho = x
ho (xx'e)
ho = x
ho (xx')
ho = x
ho, where $x' \in V(x)$, and so $x \in \ker
ho$. Hence, $\ker
ho$ is a closed subsemigroup. Since $\operatorname{tr}
ho =
ho_{|E(S)|}$ is a normal congruence on E(S), we have that $(\operatorname{tr}
ho, \ker
ho)$ is a normal congruence pair for S. \Box

REFERENCES

- [1] B.ALIMPIĆ, Some Congruences on generalized inverse semigroups, Proc. of the Conf. "Algebra and Logic", Zagreb 1984.
- [2] S.Bogdanović, Right π-inverse semigroups, Zbornik radova PMF, Novi Sad, 14 (1984), 187-195.
- [3] S.Bogdanović, Semigroups with a system of subsemigroups, Inst. of math., Novi Sad, 1985.
- [4] P.M.EDWARDS, Eventually regular semigroups, Bull. Austral. Math. Soc. 28 (1983), 23-38.
- [5] S.HANUMANTHA RAO AND P.LAKSHMI, Group congruences on eventually regular semigroups, J. Austral. Math. Soc. (A) 45 (1988), 320-325.
- [6] J.M.Howie, An introduction to semigroup theory, Academic Press, 1976.
- [7] M.Petrich, Congruences on inverse semigroups, J. of Algebra, 55 (1978), 231-256.
- [8] P.Protić and S.Bogdanović, Some congruences on a strongly π-inverse r-semigroup, Zbornik radova PMF, Novi Sad, (15) 2 (1985), 79-89.

Gradjevinski fakultet Beogradska 14 18000 Niš, Yugoslavia

Tehnički fakultet ul. JNA 12 19210 Bor, Yugoslavia