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A DECIDABLE POSITIVE RELEVANCE LOGIC

ALEKSANDAR KroN

ABSTRACT. In this paper we define a posifive relevance logic T'W, and we
show that it is decidable.

T’W, contains the positive fragment of the contractionless relevance logic
TW.,., and it is equivalent to the Gentzen-style system G*TW ., which has been
proved decidable in [3]. Moreover, G*TW . is presumably equivalent to “T'W .
investigated in [4].

Some systems close to T"'W and GT*W . were first formulated in [6]; how-
ever, the proof of Cut elimination theorem given there was incorrect, as noticed in
[2].

The decidability proof in [3] was based on a Cut elimination theorem for
GYTW . However, GYTW . was formulated there with a propositional constant
I playing the role of a placeholder, which enabled the proof of the Cut elimina-
tion theorem [or some other systems considered in [3] as well. Here we formulate a
Gentzen-style systern GT'W 1, equivalent to T°W 4, without T, and we give a direct
Cut elimination proof. The proof given here does not work for GYRW considered
in [3]. Also, here we describe another decision procedure for GT*W ..

Proofs from hypotheses in T"W

By a,aq,...,b,01,... we denote finite (possibly empty) sets of positive integers
called subscripts. An ordered pair (A, a) is a called a subscripted formula, provided
that A is a formula. In general we write A, for (4,a). We omit the subscript 0.
Lel max(a) denote the greatest element of @, if @ # 0; if @ = @, then max(a) = 0.

The axioms of T*"W, are those of TW,; they are given by the following
schemes (compare [1], p. 340):

A— A

A—-B—- B—=0C-—w . A=C
B—-C— A—-B— A=(C
ALB — A
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(A— B)&(A— C)— .A— B&C
A—AVEB
B— AV D
(A—=CYe(B—-C)— AVB—=C
A&(BV C)— ALBV A&C
The rules of T*W ;. are modus ponens and adjunction (from A, B to infer A&B).
By a proof of By from {A;,a1),...,(An, @), n > 0, we mean a finite sequence
of subscripted formulas (B1,b1),...(Bm, bm) such that By is (B, bp) and for any
1 < k < m {Bg,by) is either a hypothesis (A;,a;), 1 < j < n, or else an axiom or
else a consequence of predecessors by adjunction or modus ponens. Furthermore,
(1) if (By,br) is a hypothesis, then by # 0;
(2) if (By,bi) is an axiom, then b = 0;
(3) if (Bg,bx) is a consequence of (B;,b;) and (Bj,b;) by adjunction and
I bj, then b; = by;
(4) if (By, bx) is a consequence of (B, b;) and (B; — By, b;) by modus ponens,
then by = b; Ub;.
The application of modus ponens is further restricted as follows: b; N b; = 0,
and ecither max(b;) > max(b;) or b; = 0.
Let X,Y, Z, ... range over (possibly empty) sequences of subscripted formulas.
A subscripts a is called used in X iff there is member A, of X. By z,y,2,... we
denote the unions of all subscripts used in X,Y, 7, ..., respectively.

If there is a proof of A, from hypotheses which are members of X, we write
XFA,.

TueoreM 1. The following rules are derived in T"W . by using azioms, ad-
junction, modus ponens and the definition of a proof from hypotheses:

P From X, Aq, By, Y F C. to infer X, By, A, Y F Cy;
W From X + By to infer X, Ay & By, provided thal a # () and a C b;
C From X, A,, Ay b By to infer X, Ay F By;

TR From X b A, and Y, Ax b By to infer X, Y  By;

MP From X F A, and Y - A — By to infer X,Y,F Byup,
provided that aNb =0 and either max(a) > max(b) or b = ;

CL From X, Aq v C; (from X, B, + C.) to infer X, AkB + C,;

CR From X A, and X b B, 1o infer X F A& B,;

DL* From X, Aq b C. and X, B, F C,; to infer X, AV By, F C,,
provided that for any subscript b used in X eithera=25
oranb =0 and max(a) > max(b);

DR From X F A, (from X F B,) to infer X = AV B,;

IL From X b A, and Y, Bay b C. to infer X, Y, A — By - C,
provided that a Nb = 0 and max(a) > max(b) > 0;

1R From X, Ag b Baup 1o infer X = A — By, provided that ana =0
and max(a) > max(z).

ProoF. Left to the reader (for IR cf. [5]).

Let us consider the following rule:




A decidable posttive relevance logic

DL from X, A, - C, and X, B, + C, to infer X, AV B, - C..

The system defined by the given axioms, adjunction and modus ponens is
TW, the positive fragment of contractionless relevance logic TW.

The system T*'W . is obtained from T'W, by adjoining the rule DL. In the
sequel T°W  is gentzenized and proved to be decidable.

The Gentzen formulation

The Gentzen formulation of T*W . is denoted by GT*"W .

X F A; is called a sequent provided that if X is nonempty, then any prefix
uged in X is nonempty.

The basic sequents (avioms) are all sequents of the form A, F A,.

The rules of GT*W . are: P, W, CL, CR, DI, DR, IL and IR.

Notice that the rules have to be restated such that both the premisses and the
conclusion be sequents. In IR the subscript a is called discharged.

By a derivation in GT'W_ we mean a tree with usual properties. For a node
S of such a tree, the rank of S is the number of naodes below S, on the branch to the
origin. The weight of S is the number of nodes above S, on all branches to which
S belongs.

Now we state a theorem (o the effect that the concept of a derivation in GT*W
is well-defined.

THEOREM 2. Let (By,b1),...(Bm,bm) & By be a node in a derivation of
(Ar,a1), ..., {An,an) b Ay in GT'W,, lel M = {ay,...,a,} and let N be the
set of all subscripts discharged in this derivation; then

(1) b=DbiU-- Ubp;

(2) ifm# 0, then for all1 <7 <m b; # ;

(3) ifa# 0, then b £,

(4) if b £ 0, then for any j there are ey, ..., cx € M UN such that
by =c U Uey.

ProoF. (1) - (2) are proved by induction on weight; (3) - (4) are proved by
induction on rank.

TueoreM 3. If (I) (A1, a1),...(An,an) b Ay is derivable in GT'W,, so is
(I1) (A1, a1), .. (An,ap) & Agr, provided that for any f, g, fi,..., o € M:

(1) FFCHUUSy, then f'C {{U--U JI

(2 f=hU-Ufp, then f'=flU-- U [

(3) U fng#0, then f'Ng" =10

(4) if max(f) > max(g), then max(f’) > max(g');

(5) if max(f) = max(g), then max(f') = max(g").

Proor. Let 7 be a proof of (I) and let S be a node (Bi,b1),..., (Bm, bm)
F By of T; hy induction on the rank of S; we shall define a substitution of sub-
scripts b7,...,00,,4 for by, ..., by, b, respectively, as follows. Let us choose ayy. .G
satisfying (1)-(5) and substitute af,...a’,a’ for ay,...an,a, respectively, where

a' = ay U---Uadal, at the origin of 7 . Suppose that S; is obtained in 7 from S;
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(and S;) by an application of a rule, and S, obtained from Sy by substitution of
byy vy by 0 for by, ... by, b, is defined (b = biuU---ubl ). If ). is obtained by any
rule execpt IT, and IR, then all subscripts used in S; (and S;) are used in Sg; hence,
S (and Sj}) is (arc) obtained from S; (and S;) by substitution of ¥}, ..., b for
biyoo b, b

If Sp is obtained by IL from Z, & (C,#) and Zs, (D, d U z1) F(B,dUz U
z2), then Z] and Zj are obtained from Z; and Zy, respectively, by substitution of
bly- -y by, bfor by, ... b, b, respectively. Let z) be the union of all subscripts used
in Z{; we define (dU z;)": (dUz) = d' Uz, where d is already defined in S

If Sk is obtained by IR from Z, (C, bpyg1) b (D, 0 U byppq), where 7 is (B, b1)

oy (Bm,bm) and B is €' — D, then Z' is oblained by substitution of ¥}, ..., b,
for by,...,b;m. We put: b, = {max(V') + 1}, where ¥ = b{ U--- UV, and
(b U b,n,_|_1)'r = b’ U b:'n-i-l’

Let us show that the three 7' just defined is a derivation of (IT).

It is easy to verify that (1) - (4) of 2 hold for 7.

Let B be a branch of T and let B’ be the corresponding branch of 77. Tt is casy
to see that for any subscript ¢ (any ¢’) discharged at a node of B (of B') we have:
aiNe=0 (a;Ne¢ =0) forany 1 <i<n,and end=0 (¢’ Nd =) for any other
subscript d discharged at a node of B (of B’). This suffices to prove

H

LemMA 3.1 For any node (By,b1),..:, (B, b, ) = By of T', ifbj = ey U---Ue,,
where 1 < j<mandey,...,eq € MUN, then by =ejU-Uel.

To prove the lemma, proceed by an easy induction on the rank of
(B1,b1), ..., (Bm,bm) F By.

Now we can prove

LEMMA 3.2 For any f,g,f1,...,fp €{b1,...,bm} we have:

(1) fFCAHUUL, then £/ C f{U---U [,

(2) A f=HU-Ufy, then f' = f{U---Uf;

(3) if fNg=10, then f'ng =0;

(4) if max(f) > max(g), then max(f') > max(g');

(5) if max(f) = max(g), then max(f') = max(g’).

Details are omitted. IEventually, by using 3.2 and by proceeding inductively on
weight, it is ed8y to show that 77 is a derivation of (II).
As a consequence we have:

THEOREM 4. If (Ay,a1),...(An,an) & A, is derivable in GT'W,., so is
(A, a1\ ), ... (An,an \ b) F Ay, provided thal for any 1 <i<n

(1) either b C a; ora; Nb =10, and

(2) max(a;) > maz(bh).

THEOREM 5. The following propositions are equivalent:

(1) X FA— B, is derivable in GT'W;

(2) X, Aq b Baus is derivable in GT'W . for any a such thal aNe = 0, and
~ max(a) > max(b).
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ProoF. (2) = (1) by IR.
(1) = (2) is proved by induction on weight. In the consideration of IR 4 is
needed.

Cut elimination theorem for GT"W

Let us write X, instead of X, if a is the only subscripi used in X. Also, let
us write X[Y] instead of X, if all members of Y are members of X. By X — Y we
denote the sequence obtained from X by deletling all members of V.

For any A, let sf(A) be the set of subformulas of A. A subformula B of A
is proper if A # B. The set sf(X) of subformulas of X, where X is (41,a4),...,
(An,an), is defined by sf(X) = |U;sf(4:), i € {1,...,n}.

Let us define the combined degree cd(X) of X: cd(X) is the total number of
occurrences of conneclives in sf(X). It is obvious that cd(A,) = ed(A).

The proof of the next lemma is omitted.

LEMMA 6. For any A, B and X

(1) if B is a proper subformula of A, then
(1.1)  ed(B) < cd(4);

(1.2) ed(X,B) < cd(X,A);

(2) ed(X, A) = cd(X, A, A);

() (X -Y) < cd(X[Y]).

Suppose that the sequents Si,...,S5,,5,41 are derivable with respective
weights wi, ..., wWn, Wnq1; we define the combined weight w of S1,...,5,,5.41,
w = max(wi,...,Wn) + Wnt1. We say that Sy,...,Sn,Sayp1 are derivable with
combined weight w.

THEOREM 7. If (1) X &+ A; and (2) Y, Az, Z + By are derivable in GT"W 4
with combined weight w, then for all Y* and Z* (3) X,Y*,Z* b By is dervable
m GT'W i, where Y™, Z% ts oblained from Y, Z by deleting some (possibly none,
possibly all) members of the form A.

Proor. If (1) is basic, then (3) is obtained from (2) by P and C (if (2) and
(3) are different). If (2) is basic, then (3) is (1).

If none of (1) and (2) is basic, we proceed by double induction. Our induction
hypotheses are:

Hyp 1 The theorem holds for any A., of combined degree cd(A4.,) <

cd(A:), and any combined weight w;
Hyp 2  The theorem holds for any Al, of combined degree cd(AL,) =
cd(Az), and any combined weight w' < w.

We shall distinguish two cases: (I) the eliminated member A, has no occurrence
in the consequent part of ecither of the premisses of (1) and no occurrence in the
antecedent part of either of the premisses of (2), and (II) otherwise. In (I1) there are
two subcases: (II.1) A; occurs in the consequent part of a premiss of (1) and (I1.2)
otherwise. Furthermore, in (IL.2) there are two sub-subcases: (I1.2.1) the number
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of membérs of the form A, in all premisses of (2) equals the number of members of
the same form in (2}, and (I1.2.2) otherwise.

Let us consider how (2) could have been obtained.

Suppose that (2) is obtained by IL from (2') Z; + C;, and (2") Z2, (D,aUzi)
B, where aNz; = 0, max(e) < max(z), and Y, A,,Z is Z1,7,,C — D,. By (1)
and 5, X, (4:,z1} F (A2, z U z) is derivable, where A is 41 — As.

() a=z and Ais C — D. By (2'), (1'), 6 (1.1) and Hyp 1 we obtain (3')
Zy F (Ay,z U z1); by (3'), (27), 6 (1.1), Hyp 1 and P we obtain (3).

(IL.1) The use of premisses of (1), (2), Hyp 2, P and IL is easy.

(I1.2.1) By (1), (2') and Hyp 2 we obtain (3') X, Z} I {C, z1); by (1), (2) and
Hyp 2 we derive (3") X, Z3, (D,a U z;) I By; hence, (3) is derivable by (3'), (3"),
IL, P and C.

(11.2.2) a = z and A is C — D. Since ¢Nz; = @, the subscript z is not used
in Zy. By (1), (2”) and Hyp 2, (3”) X, Z3,(As,2U z;) I B, is derivable. By (27,
(1), 6 (1.1) and Hyp 1, (3') Z1, X I (42,2 U 1) is derivable. Hence, by (3'), (3"),
6 (1.1), Hyp 1, P, and C we obtain (3).

The examination of the remaining rules is almost standard and hence omitted.

The theorem is proved by double induction.

ToEoREM 8. Suppese that the following conditions are satisfied:
(a) (1) FAy,..., (n) F A, and (n+1) Y[U,] - By are derivable in
GT*W . with combined weight w;
Us and Y are (A1,a),...,(An,a) and (By,b1),...,(Bm,bn),
respectively, and n > 1;
(c) all members of Y with the subscript a are members of Ug;
(d) Jor any B; < j <m, eithera Cb; oranb; = 0;
(e) if a # bj, then max(a) < max(b;);
then (n+1) Y* | By, is derivable in GT "W, where Y™ is oblained from Y — U
by substitution of b; \ a for b;, for any b; used in Y —U.

Proor. If (n+41) is basic, then n =1, a = b, A; is B and B is derivable hy
(1).

If (n+1) is not basic, proceed by double induction. Qur induction hypotheses
are as Hyp 1 and Hyp 2, with U/, instead of A..

Let us distinguish two main cases: (I) there is a 1 < 7 < n such that A; is the
principal member in the antecedent part of (n+1) (i.e. introduced in the antecedent
part of (n+1) by an application of a rule) and (II) otherwise. In (I) there are two
subcases: (I.1) no member of U, occurs in the antecedent part of a premiss of (n+-1)
and (I.2) otherwise. It is clear that in (I.1) n = 1.

Let us consider how (n+1) could have been obtained.

Suppose that (n41) is obtained by IL from (n+1') Z; F {(C, z;) and (n+1")
Z3,{D,cUz) I By, where cNz; = §, max(c) < max(z;), and Y[U,] is 21, Z2,C —
D.. By 5, (i') {(Af,z1) & (A], z1) is derivable, where 4; is Al — AY.

(la=cand 4;is C — D.
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(I1) n = 1. By (27, (1') and 7, (3') Z1 b (A%, z)) is derivable. But a is not
used in Zs, 2 is nonempty, aNz; = § and max(a) < max(b;) for any b; used in Z,.
Hence, the conditions of 4 are satisfied and (3") Z3, (A{, 1) & By, is derivable.
Mence, by (3"), (3"), 6 (1.1) and Hyp 1, (3) is derivable.

(I.2) Since @ = ¢ and ¢Nz; = 0, a is not used in Z;. By (n+1"), (i') and 7,
(n+2) Z, F (AY, z;) is derivable. Let V, be the sequence of members of U/, which
are members of Zy. Since U is U[V, (A;,a)], by 6 (3) ed(Va)<ed(Us). If (A;, )
is a member of Z3, then cd(U,) = ¢d(V,) by 6 (2); by (1) - (n), (n+1") and Hyp
2, (n+2") Z3, (A}, z1) & By\q is derivable. If {A;,a) is not a member of Z,, then
cd(Va) < ed(U,) by 6 (3); by (1) - (i-1), (i+1) - (n), (n+1") and either Hyp 1 or
Hyp 2 we obtain (n+2") as above. By (n+2'), (n+2") and 7 we prove (n+2).

(II) Since a # ¢, either a C c or aNe # @ by (d), and max(a) < max(c) by (e).
Let V, and W, be subsequences of U, which are members of Z; and Z, respectively.
By 6 (3) we have both cd(V,) < cd(U,) and cd(W,) < ¢d(U,). Without loss of
generality we may assume thal none of ¥, and W, is empty. By (1) - (n), (n+1")
and either Hyp 1 or Hyp 2, (n42") Z} I (C, 2 \ a) is derivable. Also, by (1) - (n),
(n+1") and either Myp 1 or Hyp 2, (n+2") Z3, (D, (cUz1) \ a) F By, is derivable.
Hence, by (n+2"), (n+2") and IL (n+2) is derivable.

Suppose that ( n—H) is obtained by CL from (n-+1) 2y, C, F By.

(I) a = ¢ and A; is AL&AY, ie. C&D.

(1.1) Since (1) is not basic, (1') - A is derivable. By (1), (2'), 6 (1.1) and
Iyp 1, (3) is derivable.

(1.2) Let V; be the sequence of members of U, which are members of Z;. If
(Ai, a) is a member of Z;, then cd(V;, (4}, a)) = cd(U,); if (4;, @) is not a member of
Z1, then ed(V,, (AL, a)) < cd(Us), by (3 (] 2). Now 1f(d(Vﬂ, (A}, a)) = cd(U,), then
by (1) - (i-1), ('), i+1) - (n), (n+1") and Hyp 2 (n+2) is derivable. If cd(V;, (A}, a))
< cd(Uy), then by (1) - (i-1), (i"), (i+1) - (n), (n+1') and Typ 1 (n+2) is derivable.

(IT) Since a # ¢, either @ C ¢ or aNe = ) by (d), and max(a) < max(c) by (e)
Let Vo be as in (1.2). By (1) - (n), (n+1’) and Hyp 2 (n+2") Z},(C,c\ a) By, is
derivable. Hence, (n+2) follows by (n+2') and CL.

Suppose that (n+1) is obtained by DL from (n+1') Z;,C, b By and (n+1")
Zy,D. b By,

(I) a=cand A; is OV D, i.e. A}V AY. Sinee (i) is not basic, it is obtained by
DL from, say, (i') F AL

(1) n=1. By (1’) , 6 (1.1) and Hyp 1, (3) is derivable.

(I.2) Let V, be the sequcnce ol members 0[ Uﬂ which are members of Zy. If
ed(Va, {A],a)) = cd(U,) by 6 (1.2), then by (1) - (i-1), (i), (i+1) - (n), (n+1) and
Hyp 2 we obtain (n+2). If cd(V;, (4%,a)) < cd(U ) then by (1) - (i-1), ("), (i+1)
- (n), (n+1') and Hyp 1 we obtain (n+2).

(II) Since a # ¢, either @ C cor aNe = @ by (d), and max(a) < max(c) by
(e)- By (1) - (n), (n+1') and Hyp 2, (n+2') Z;,(C,c\ a) I By q is derivable; by (1)
-(n), (n+1") and Myp 2, (n+2") Z}, (D, ¢\ a) b By, is derivable; hence, by (n+2),
(n-+2"") and DL we prove (n+2).

Suppose that (n+1) is obtained by W from (n+1") Z; & By, where Y[U,] is
Zy,C. and ¢ Cb.
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(I) a = c and A; is C.

(I.1) n = 1. Since A is not used in Zy, for any b; used in 2, cither a C bj or
anb; =0, and max(a) < max(b;). Hence, (3) is obtained from (2') by 4.

(1.2) Let V, be the sequence of members of U, which are members of 71. By
6 (3), cd(Va) < c¢d(Ua). Hence, (n+2) is obtained by (1) - (n), (n+1) and either
Hypl or Ilyp 2.

(I1) Since a # ¢, Z1 is Z1[U,), and for any b; used in Z; either @ C ¢ or
ane= 0, and max(a) < max(c). By (1) - (n), (n+1") and Hyp 2, (n+2") Z] I By\a
is derivable. Now (n+2) is obtained by W [rom (n+2).

Suppose that (n+1) is obtained by C from (n+1') Z1,C., C. & By, where Y [U,]
is Zl, CC.

(I) a =c and 4; is C.

(L.1) n = 1. Let us repeat the proof of (1); we may assume that (1), (1) and
(2') are derivable with combined weight w — 1 (since so are (1) and (2)). By (1),
(1), (2'), 6 (2) and Hyp 2, 2] F By, is derivable.

(1.2) By (1) - (i-1), (i), (i) - (n), (n+1’), 6 (2) and Hyp 2, (n+2) is derivable.

(I1) Since a # ¢, either @ C ¢ or aNe¢ = §, and max(a) < max(c). By (1) -
(n), (n+1') and Hyp 2, (n+2") Z7, Ceva, Ceva F Byg 1s derivable. Hence, (n+2) is
obtained from (n+1") by C.

If (n+1) is obtained by any of the remaining rules, the examination is trivial
and hence omitted.

The proof of the theorem is completed by double induction.

THEOREM 9. GT'W is closed under MP.

Proor. Suppose that (1) X + A; and (2) A — By are derivable, where
zNy = 0, and either max(z) > max(y) or y = 0. By 5, (2') Y, A, b Bguy 1s
derivable. If z # 0, then X, Y & By, follows by 7. If z = 0 (and y = 0), then - B
follows {rom (1) and (2) by 8.

As a corollary we have
THEOREM 10. X F Ay in T°W 4 ff X F A, is derivable in GT"W .

Proor. Let the reader prove: if A is an axiom of T'"W, then - A is derivable
in GT"W . The theorem then follows by 1, by definition of T°"W ., 7 and 9.

Decidability

Let us call a sequent reduced ifl each of its members occurs at most twice in it.
A derivation is reduced iff each of its nodes is reduced.

A branch B of a derivation tree is without repetitions iff any sequent occurs
in B at most once. A derivation T is without repetitions iff every branch of T is
without repetitions.

The proofs of the following two theorems are omitted.
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THEOREM 11. A reduced sequent S is derivable in GT*W . iff there is a reduced
derivation of S.

THEOREM 12. For any derivable sequent there is a derivafion withoui repeli-
tions.

By a derivation search tree T for S we mean a tree with S at the origin such
that for any node 53 of rank » in 7:

(1) there is (are) node(s) S; (and Sj) of rank r+-1 such that Si can be obtained
from S; (and S;) by an application of a rule or else S is basic or else St 1s of the
form p,  qa, where p and ¢ are distinct variables;

(2) Sy is reduced;

(3) 7 is without repetitions.

Let (Cl, (’,'1}, cay {Cp, Cp) H (Cp+1, CP+1) and (D], ql), - (Dq,qq) = (JD«-.;_Ij
gs+1) be a premiss S; and the conclusion Si, respectively, of a rule g; it is easy
to see that for any member A, of S; there is a member B; of S such that A, is
a subformula of B. Since S; and Si can be considered as an ordered p + 1-tuple
and an ordered q -+ 1-tuple (if we disregard t), there is a function f mapping S; in
Sy and each member 4, of S; to a member B; of Sk showing what happens to A4,
when p is applied. Let us define f.

P We have: p = q and there is a 1 < v < p such that (Cy,cy) = (Dy1,dv41) and
(Cutt,up1) = {Dy,dy). If either u < v or u > v+ 1, then f((Cu,cu)) =
(Du,du); if v = v, then f({Cu,cu)) = (Dog1,dopr}; if w = v + 1, then
f((cuacu)) = (D“sd"'ﬂ)'

W Obviously, g = p+1. If u < p, then f({Cu, cu)) = (Du,dy); if u=p+1, then
f((cua Cu)) == (D9+1 ) dq+1))-

C Obviously, p=q+1. If u <p—1, then f({Cy,cu)) = (Dy,dy); if u = p, then
J({Cu, eu)) = (Dyg, dy) and F((Cort, cp1)) = (Dgs, de).

IL If S; is the left premiss and u < p, then f((Cy,cu)) = (Du,du); if u=g+1,
then f({Cu,cu)) is the principal member of Si. If S; is the right premiss and
either v < p or u = p+ 1, then f({Cy,cu)) = (Dytv,duiv), Where v is the
number of members of the antecedent part of the left premiss. If u = p, then
f({Cy, cu)) is the principal member of Sp.

IR Obviously, p=¢+ 1. Il u < p— 1, then f({Cu,cu)) = (Du,du); if cither u=p
or u=p+1, then f({Cy,ec,)) is the principal member of Sg.

If ¢ is any of CL, CR, DL, or DR, then we have p = ¢; we put f({(Cu,cu}) =
(Du 1 du ) .

In the sequel 7 is a derivation search tree for S and B is a branch of 7 .

For any node S; of B of rank r; and any member A, of S;, let us define f; , Aq as
follows, where 0 < n < it fio(Aa) = Aa; fim1(4a) = f(fim(Aa)) for 0 <m < n.
Thus, f;n(As) shows what has happened to A, after n applications of some rules,
the first being an application to S;.

THEOREM 13. For any S; and Sy of B, of ranks r; and vy, respectively, r; > v,
and any member of Ay of S;
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(a) there is exactly one member By of Sy such that
fin(Ag) = By and n = r; — ry;

{b) A is a subformula of B;

(¢) tf A= B, then a = b.

PROOF. (a) By definition, f is a function. If r; = rr, then f;o(Aq) = Aq; but
S; is an ordered p + I-tuple; hence, A, is uniquely determined by its position in S;.

(b) By induction on n in f;,. If n = 0, (b) is trivial. Suppose that Sy is
obtained by a rule ¢ and 5; is a node of B which is a premiss in this application
of g. By induction hypothesis, A € sf(C) such that f; ,_1(4,) = C, for some
and n — 1 = »; — r;. Obviously, f(C.) = B;. By inspection of the rules, we see that
C € sf(B); hemce, sf(C) C sf(B) and thus A € sf(B).

(¢) By induction on n in f; . The claim is trivial if n = 0. Suppose that S, is
obtained by an application of a rule g and that Sj is a node of 5 which is a prermss
in this application of g. By induction hypothesis, if A = ¢, where Fon-alAz) =
then a = ¢. By inspection of the rules, we see that if C: ) By and B =C, then
b=c.Since A= B and f;(As) = By, we have f(fi n_1(A4)) = A; and flC) =
If Ay 1s the principal member of Sy, then, by inspection of the rules, we see Lhat C’
is a proper subformula of A. By (b), A is a subformula of (. 'I‘herefom1 Ap 1s not
the principal member of Si. By inspection of the rules, we see that C, = B, = A,.
Hence A = C and by induction hypothesis a = ¢. Also, we have f(C.) = B; and
B = (C; therefore, a = b = ¢.

THEOREM 14. For any S; and Sy in B, of ranks r; and ry, respectively, r; >,
and for any Ay and By in S;, ifant = %B fin(Aa) # fin(By) and both f; n(As)
and f; o(By) are in the antecedent part of Sy, n = r; — v, then the mbscwpte of
fin(As) and f; ,,(By) are disjoint.

PROOF. Suppose that the conditions of the theorem are satisfied. If 7; = T
the theorem is trivial.

Suppose that S; is a premiss of a rule p such that Sy is the conclusion of 0 and
that S; is the node o{ B of rank rpy;. Furhhermme suppose that f; ,_1(Aq) = C,
fin 1(Bg,) Dy, finlAg) = Eg and f; n(By) = Gy, and that if C, and Dy are in
the antecedent part of S;, Cc # Dy, then ¢cNd = @ (induction hypothesis).

If either E, and G are parametric members of S, or g is either C, P or W, then
Ee = fin(Aa) = F(Fin-1(4a)) = F(C2) = Co and Gy = fin(By) = f(fimor(B2) =
f(Da) = Dy. Hence, il E, # Gy, then eng =0 by mductlon hypothesis.

Let . be a parametric and G, the principal member of S; if g is either CL or
DL, then E, = f(fin(4a) = f(C. ) = Ce and Gy = f(fi,n(Bs)) = f(Da). 1t is clear
that ¢ =eand d = g. Since I, and G, are not the same member of Si, C, and Dy
are not the same member of S;, by 13 (a). Mence, eNg = eNd = @ by induction
hypothesis.

Let g be IL. If 5; is the left premiss, then eNg = @ by definition of o. If Sj is the
right premiss, then E = f(fimn—1(4a)) = f(Ce) = C:, Gy = F(fijn-1(Bs)) = f(Dd)
and g C d, by definition of p. Since E, and G, are two distinet members of S, C,
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and Dy are two distinet members of S;; hence, ¢ N d = 0 by induction hypothesis
and thus e g = 0.

THEOREM 15. Let Sy,...,5, be nodes of B of ranks r1, ..., r,, respectively, let
{A,a1),..., (A, an belong to the antecedent parts of Sy, ..., Sy, respectively, and {he
subscripls aq, ..., ay be pairwise disjeini. If there is a Sy in B of rank v, vy < 1y,
and o member By of Sy, such that for all1 <i < n, my = rp—ri, fim, (A, @) = By,
then A oceurs p > n times as a subformula in B.

Proor. If n = 1, the theorem holds by 13 (b). Suppose that n > 1, that the
conditions of the theorem are satisfied and that Sy is the first node of B after S,
with such a property. Let us consider how Sj could have been obtained.

Suppose that Sp is obtained by an application of a rule ¢ and that S; is a
premiss of p and a node of B of rank r; + 1. It is clear that g is neither P nor
W. By inspection of the rules, we see that for any member Dy of S; there are at
most two members E, and G, in the premiss(es) of 5y, in the application of g, such
that f(E.) = f(G,) = Dg. Since all (4,a1),...,(A,a,) occur in the nodes of B,
there is a member C; in S such that, say, fjm,~1((4,a;)) = C, forall1 < i < n,
and there is a member (D', d’) of Sj such that f, ., —1({4,an)) = (D', d'}, where
Dy = f(Ce) = J({(D',d"), and C, and (D', d’) are distinct members of S;. If both
C. and (D', d') are in the antecedent part of S;, then cNd’ = @ by 14. Hence, g is
nol €. By inspection of the rules, we eliminate all remaining ones as candidates for
o0, except IR. Furthermore, by induction hypothesis, A occurs p’ > n — 1 times as a
subformula of C.

Let Sy be X F Dy obtained from X, F, - Gau. by IR, where I} = E — (7, and
either B, = C; and Gyue = (D', d') or else E, = (D', d) and Gy = C.. By 13,
A occurs p” times as a subformula in D', p” > 1. By using induction hypothesis
and the fact that D = E — G, we conclude thal A oceurs g’ + p” > n times as a
subformula in .

Suppose that S is nol the first member of B of rank ¢, rp < vy, such that S
contains Dg; then the theorem follows by 13.

This completes the proof of the theorem.

Let ¢ be a rule; for a member S of 5 we say that S is g-member iff it is a
premiss in an application of g.

TurorEM 16. If the nwmber of IR-members is finite, then B is finite.

PROOF. Suppese that the number of IR-members is finite; then there is a finite
number of subscripts disharged in B. By 2 (4), each subscript used in B is the union
of some subscripts used at the origin of 7 and some other subscripts discharged in
B. Hence, the number of subscripts used in the nodes of 5 is finite. By 13 it follows
that every member Sy ol Beonsists of subscripted subformulas of the members of
S. Therefore, there is a finite number of reduced sequents that can be constructed.
Since B is without repetitions, it is finite.

TueoreM 17. Lvery derivation search tree T is finite.
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ProoF. Suppose that 7 is infinite; by Konig’s lemma, 7 has an infinite branch
B. By 16, there is an infinite number of IR-members of B. Hence, an infinite number
of pairwise disjoint subscripts is used in B(those discharged in B). Since the number
of subformulas of members of S is finite, there is a formula A such that A is a
subformula of a member Dg of S and A occurs in the nodes of B with an infinite
number of pairwise disjoint subscripts a1,...,an,.... By 15, for any S; of B, any
(D,d") of 5k, any finite n and any aq,...,an, if fim,((4,a;)) = (D',d’) for any
1 < ¢ < n, then A occurs p times as a subformula in I, p’ > n. It is clear that
S is such a S of B and Dy is a (D',d") in S. Hence, A occurs at least n times as
a subformula in D, for any finite n. This is absurd. Ience, every branch B of 7 is
finite and thus 7 is finite.

THEOREM 18. GT"W, s decidable.

Proor. By 5, IR can be used in the following form:
IR" From X, {max(x) + 1}A F (B, & U {max(z) + 1}) to infer X - A — B,.
By 17, it follows that the number of derivation search trees for a given § is
finite.
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