## INCIDENCE STRUCTURES WITH *n*-METRICS

## Dončo Dimovski and Alija Mandak

ABSTRACT. In this paper we define and examine structures  $(V, B, \in, d)$ , where  $(V, B, \in)$  is a t-design or [n, n+m]-net, d is a mapping from  $V^t$  to  $R \setminus R^-$  which satisfies certain axioms analogous to the axioms of usual metrics. The mapping d is a generalization of the usual metrics so we call it n-metric function and we call the structure  $(V, B, \in, d)$  n-metric space. Then we define a t-induced topology and examine it.

An incidence structure is a triple D = (V, B, I), where V and B are disjoint sets and  $I \subseteq V \times B$ . The elements of V will be called *points*, those of B blocks. If A is any point, (A) will denote the set of blocks incident with A, i.e.

$$(A) = \{ b \in B \mid A I b \} ,$$

and more generally for any subset  $\{A_1, A_2, \ldots, A_n\}$  of point set

$$(A_1, A_2, \dots, A_n) = \{b \in B \mid A_i \mid b \text{ for each } i = 1, \dots, n\}$$
.

Similarly we write

$$(b_1, b_2, \ldots, b_n) = \{A \in V \mid A \mid b_i \text{ for each } i = 1, \ldots, n\}$$
.

We will consider incidence structures where distinct blocks have distinct point sets. We can identify each block b with the corresponding point set (b) and the incidence relation I with the membership relation.

Definition 1. A finite incidence structure D=(V,B,I) is called a block design with parameters  $v,k,\lambda$   $(v,k,\lambda\in N)$  if it satisfies the following conditions:

- a) |V| = v;
- b)  $|(P,Q)| = \lambda$  for all  $\{P,Q\} \subseteq V$ , i.e. any two distinct points are joined by exactly  $\lambda$  blocks;
  - c) |(b)| = k for any block b.

A finite incidence structure D = (V, B, I) is called t-design  $(S_{\lambda}(t, k, v))$  if it satisfies conditions a), c) and b'), where

b') any t distinct point are joined by exactly  $\lambda$  blocks. In the case  $\lambda = 1$ , a t-design is called a Steiner system S(t, k, v). An S(3, 4, v) is called a

<sup>1991</sup> Mathematics subject classification: 05B99, 05B05, 51E05

Steiner quadruple system.

The following result is proved in [1].

Theorem 1. Let D be a t-design and let  $s \le t$  be a positive integer. Then D is also an s-design. If D has parameters v,k and  $\lambda_t$  (where  $\lambda_t$  is the number of blocks through a t-set), then the parameter  $\lambda_s$  (the number of blocks through an s-set) is given by

$$\lambda_s = \lambda_t \begin{pmatrix} v - s \\ t - s \end{pmatrix} / \begin{pmatrix} k - s \\ t - s \end{pmatrix} .$$

DEFINITION 2. Let V and B be nonempty sets, let  $B=B_1\cup\cdots\cup B_{n+m}$  be a partition of B, where  $n\geq 2$ ,  $m\geq 1$ , and let  $I\subseteq V\times B$ . The structure (V,B,I) is called an [n,m+n]-net if the following conditions are satisfied:

i) if  $P \in V$ , then there exists exactly one sequence  $b_1, b_2, \ldots, b_{n+m} \in B$ 

such that  $P I b_s$ ,  $b_s \in B_s$ , for all  $s \in N_{n+m}$ ;

ii) if  $\varphi: N_n \to N_{n+m}$  is an injection and  $b_s \in B_{\varphi(s)}$ , then there exists exactly one  $P \in V$  such that  $P \mid b_s$  for all  $s \in N_n$ .

The sets  $B_1, B_2, \ldots, B_{n+m}$  are called classes of parallel blocks. The following result is proved in [2].

Theorem 2. A) The classes of parallel blocks have the same cardinality  $|B_i|=q,\ i=1,\ldots,n+m.$ 

b) If  $b_1, b_2, \ldots, b_r$  are r-blocks from r-different classes where  $1 \le r \le n$  then  $|(b_1, b_2, \ldots, b_r)| = q^{n-r}$ .

In the following definition V may be any nonempty set, but we take V to be the set of points or the set of blocks of an incidence structure.

Definition 3. Let  $D=(V,B,\in)$  be an incidence structure. The mapping  $d:V^t\to R\setminus R^-$  ( $B^t\to R\setminus R^-$ ) is called t-metric function if it satisfies the following axioms:

i)  $d(A_1, A_2, \dots, A_t) = 0 \iff A_1 = A_2 = \dots = A_t;$ 

ii)  $d(A_1, A_2, \dots, A_t) = d(A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_t})$ , for every permutation  $\alpha$  on t elements,  $\alpha \in \Sigma_t$ ;

*iii*)  $d(A_1,\ldots,A_{t-2},X,Y)=d(A_1,\ldots,A_{t-2},X,Z)+d(A_1,\ldots,A_{t-2},Z,Y).$ 

For n=2, d is the usual metric. We call the structure  $D=(V,B,\in,d)$ , t-metric space.

Theorem 3. Let  $D=(V,B,\in)$  be an [n,m+n]-net. The mapping  $d:B^t\to R\setminus R^-,\ 2\le t\le n$  defined by:

$$d(b_1, b_2, \ldots, b_t) = |(b_i)| - |(b_1, b_2, \ldots, b_t)|,$$

for every  $(b_1^t) \in B^t$ , i = 1, ..., t, is a t-metric function.

Note.  $(b_1^t)$  denotes the sequences  $(b_1, b_2, \ldots, b_t)$ .

PROOF. For any block  $b \in B$ ,  $|(b)| = q^{n-1}$ . So, it follows that d is a well

defined mapping. If  $b_1 = b_2 = ... = b_t$ , then  $d(b_1, b_2, ..., b_t) = |(b_i)| - |(b_i)| = 0$ . If  $b_i \neq b_j$ , then

$$|(b_i)| > |(b_1, b_2, \dots, b_t)|, \ d(b_1, b_2, \dots, b_t) = |(b_i)| - |(b_1, b_2, \dots, b_t)| > 0$$

and condition i) holds. The condition ii) is obvious so it remains to prove the condition iii). If  $b_i \parallel b_j$  for some  $i \neq j$ , then

$$d(b_1,\ldots,b_{t-1},x)=d(b_1,\ldots,b_{t-1},y)=|(b_i)|,$$

and *iii*) holds. Bacause of the above we may suppose that  $b_i \not\parallel b_j$ , for every  $i \neq j, i, j = 1, ..., t$ . If x = y then

$$d(b_1,\ldots,b_{t-1},x)=d(b_1,\ldots,b_{t-1},y)$$
.

If x || y then  $d(b_1, ..., b_{t-2}, x, y) = |(b_i)|$  so that

$$d(b_1,\ldots,b_{t-1},x) = |(b_i)| - |(b_1,\ldots,b_{t-1},x)| \le |(b_i)| = d(b_1,\ldots,b_{t-2},x,y)$$
  
  $\le d(b_1,\ldots,b_{t-2},x,y) + d(b_1,\ldots,b_{t-1},y)$ .

In both cases the condition iii) holds. We may suppose that  $x \neq y$  and  $x \nmid y$ . If  $y \mid\mid b_i$  for some i = 1, ..., t-1, then

$$d(b_1,\ldots,b_{t-1},y) = |(b_i)| - d(b_1,\ldots,b_{t-1},x) \le |(b_i)| = d(b_1,\ldots,b_{t-1},y)$$
  
 
$$\le d(b_1,\ldots,b_{t-1},y) + d(b_1,\ldots,b_{t-2},x,y).$$

In the case, when  $x \parallel b_i$  for some i = 1, ..., t-1, and  $y \not\parallel b_i$  for every i = 1, ..., t-1, we have

$$d(b_1, \dots, b_{t-1}, y) \ge q^{n-1} - q^{n-2}, \ d(b_1, \dots, b_{t-2}, x, y) \ge q^{n-1} - q^{n-2}, d(b_1, \dots, b_{t-1}, x) = q^{n-1} \le 2(q^{n-1} - q^{n-2}) \le d(b_1, \dots, b_{t-1}, y) + d(b_1, \dots, b_{t-2}, x, y).$$

So we are left with the case  $x \not\parallel b_i$ ,  $y \not\parallel b_i$  for every i = 1, ..., t - 1. If  $x = b_i$  for some i = 1, ..., t - 1, then

$$d(b_1, \dots, b_{t-1}, x) \le q^{n-1} - q^{n-t+1} \le 2(q^{n-1} - q^{n-2}) \le d(b_1, \dots, b_{t-1}, y) + d(b_1, \dots, b_{t-2}, x, y) .$$

If  $x \neq b_i$  for every i = 1, ..., t-1 then

$$d(b_1, \dots, b_{t-1}, x) \leq q^{n-1} - q^{n-t} \leq 2(q^{n-1} - q^{n-2})$$
  
$$\leq d(b_1, \dots, b_{t-1}, y) + d(b_1, \dots, b_{t-2}, x, y) . \square$$

From Theorem 3. it follows that the structure  $D=(V,B,\in,d)$  where  $(V,B,\in)$  is an [n,n+m]-net and d is a t-distance function for every  $t\in N,\ 2\leq t\leq n$ , is a t-metric space.

The following theorem proves that every t-design  $D=(V,B,\in)$  produces an n-metric for every  $2\leq n\leq t$ .

Theorem 4. Let  $D=(V,B,\in)$  be a t-design  $S_{\lambda}(t,k,v)$ . The mapping  $d:V^n\to R\setminus R^-$  defined by:

$$d(A_1,\ldots,A_n) = |(A_i)| - |(A_1,\ldots,A_n)|,$$

 $2 \le n \le t$ ,  $n \in N$ , is an n-metric function.

PROOF. For any point  $A_i \in V$ ,  $|(A_i)| = r$ , and for any  $n \in N$  with  $2 \le n \le t$ ,  $\lambda_n \ge \lambda_t = \lambda$  where  $\lambda_n = |(A_1, \ldots, A_n)|$ . So it follows that d is a well defined mapping. If  $A_1 = A_2 = \cdots = A_n = A$  then

 $d(A_1,\ldots,A_n)=d(A,\ldots,A)=|(A)|-|(A,\ldots,A)|=|(A)|-|(A)|=0\ .$  On the contrary, if  $A_i\neq A_j$  for some  $i\neq j$ , then  $|(A_1,\ldots,A_n)|<|(A_i)|$ ,  $d(A_1,\ldots,A_n)=|(A_i)|-|(A_1,\ldots,A_n)|>0$  and condition i) holds. The condition i) is obvious so it remains to prove the condition ii). Let  $A_1,\ldots,A_{n-1},Y,Z\in V$ . If Y=Z then

$$d(A_1,\ldots,A_{n-1},Y) = d(A_1,\ldots,A_{n-1},Z) , \quad d(A_1,\ldots,A_{n-2},Y,Z) \ge 0 , d(A_1,\ldots,A_{n-1},Y) \le d(A_1,\ldots,A_{n-2},Z) + d(A_1,\ldots,A_{n-2},Y,Z) ,$$

and the condition iii) holds. Because of the above, we may suppose that  $Y \neq Z$ . If  $Y = A_i$  for some i = 1, ..., n-1, then

$$d(A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{n-1}, Y, Z) = d(A_1, \ldots, A_{n-1}, Z),$$
  
 $d(A_1, \ldots, A_{n-2}, Y, Z) \ge 0,$ 

and

$$d(A_1, \dots, A_{n-1}, Y) \leq d(A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_{n-1}, Y, Z)$$
  
=  $d(A_1, \dots, A_{n-1}, Z)$   
 $\leq d(A_1, \dots, A_{n-1}, Z) + d(A_1, \dots, A_{n-2}, Y, Z)$ .

If  $Z = A_i$  for some i = 1, ..., n-1 and  $Y \neq A_i$  for every i = 1, ..., n-1, then

$$|(A_1, \ldots, A_{n-1}, Z)| \ge |(A_1, \ldots, A_{n-2}, Y, Z)|,$$
  
 $d(A_1, \ldots, A_{n-2}, Y, Z) \le d(A_1, \ldots, A_{n-1}, Z),$ 

and

$$d(A_1, \ldots, A_{n-1}, Y) \le \lambda_1 - \lambda_n \le 2(\lambda_1 - \lambda_2) \le d(A_1, \ldots, A_{n-2}, Y, Z)$$
  
 
$$\le d(A_1, \ldots, A_{n-2}, Y, Z) + d(A_1, \ldots, A_{n-1}, Z).$$

In the case  $Y \neq Z$ ,  $Y \neq A_i$ ,  $Z \neq A_i$  for every i = 1, ..., n-1, we have

$$d(A_1, \dots, A_{n-1}, Y) = d(A_1, \dots, A_{n-1}, Z)$$
,  
 $d(A_1, \dots, A_{n-2}, Y, Z) > 0$ ,

and

$$d(A_1,\ldots,A_{n-1},Y) \leq d(A_1,\ldots,A_{n-1},Z) + d(A_1,\ldots,A_{n-2},Y,Z)$$
.

Definition 4. Let  $D = (V, B, \in, d)$  be an n-metric space,  $(A_1^t) \in V^t$ ,  $t \in N$ ,  $1 \le t < n$ ,  $\epsilon \in R^+$ . The subset  $B(A_1^{n-t}, \epsilon)$  of the set  $V^t$  defined by  $B(A_1^{n-t}, \epsilon) = \{(Y_1^t) \mid (Y_1^t) \in V^t, \ d(A_1^{n-t}, Y_1^t) < \epsilon\}$ 

is called an open  $\epsilon - (n-t,t)$ -ball with the center  $(A_1^{n-t})$  and radius  $\epsilon$ .

Definition 5. The topology generated by the set of all open  $\epsilon-(n-t,t)$ -balls,  $B(A_1^{n-t},\epsilon)$ , is called a topology t-induced by the n-metric function.

The following example shows that there exists a finite n-metric space so that the t-induced topology is not discrete.

EXAMPLE 1. Let  $D=(V,B,\in)$  be a Steiner quadruple system S(3,4,8),  $V=\{1,2,3,4,5,6,7,8\},$ 

$$B = \begin{cases} \{1,2,3,4\}, & \{1,2,5,6\}, & \{1,2,7,8\}, & \{1,3,5,7\}, & \{1,3,6,8\}, & \{1,4,5,8\}, & \{1,4,6,7\} \\ \{5,6,7,8\}, & \{3,4,7,8\}, & \{3,4,5,6\}, & \{2,4,6,8\}, & \{2,4,5,7\}, & \{2,3,6,7\}, & \{2,3,5,8\} \end{cases}$$

The 4-metric  $d: V^4 \to R \setminus R^-$  from Theorem 4. is defined by: for  $X \neq Y \neq Z \neq T$ , d(X, X, X, X) = 0, d(X, X, X, Y) = 7 - 3 = 4, d(X, X, Y, Y) = 7 - 4 = 3,

 $d(X,Y,Z,T) = \begin{cases} d(X,X,Z,Y) = 7 - 1 = 6, \ d(X,Y,X,Y) = 4, \\ 7 & \text{if points } X,Y,Z,T \text{ are not incident with the same block} \\ 6 & \text{if points } X,Y,Z,T \text{ are incident with the same block} \end{cases}$ 

We may define open  $\epsilon - (3, 1)$ -balls, open  $\epsilon - (2, 2)$ -balls and open  $\epsilon - (1, 2)$ -balls. The open  $\epsilon - (3, 1)$ -balls are:

$$B(X, X, X, 1) = \{X\}, \ B(X, X, Y, 5) = \{X, Y\}, B(X, X, X, 5) = V, \ B(X, X, Y, 7) = V,$$

 $B(X,Y,Z,7) = \{X,Y,Z,T \mid X,Y,Z,T \text{ are incident with the same block}\}.$  For every  $X \in V$  the subset  $\{X\}$  is open, and so, the 1-induced topology is discrete.

The open  $\epsilon - (2, 2)$ -balls are:

$$B(X,X,1) = \{(X,X)\}, \ B(X,X,5) = \{(X,Y) \mid Y \in V\},$$

$$B(X,X,7) = V, \ B(X,Y,5) = \{(X,X),(Y,Y),(X,Y)\},$$

$$B(X,Y,7) = \{(X,X),(Y,Y),(X,Z),(Y,Z),(U,T)\},$$

 $| Z \in V, X, Y, U, T$  are incident with the same block  $\}$ .

 $B(X, X, 5) \cap B(Y, Y, 5) = \{(X, Y)\}$ . For every  $X \neq Y$  the subsets  $\{(X, Y)\}$ ,  $X \neq Y$ , are open sets, and so the 2-incident topology is discrete.

The open 
$$\epsilon - (1,3)$$
-balls are:  $B(X,1) = \{(X,X,X)\},$   
 $B(X,5) = \{(X,X,X),(Y,Y,Y),(X,X,Y),(X,Y,Y) \mid Y \in V, Y \neq X\}$   
 $B(X,7) = \{(X,X,X),(Y,Y,Y),(X,X,Y),(X,Y,Y),(Y,Y,Z),(X,Y,Z)$   
 $\mid Y,Z \in V, Y \neq X, Z \neq X, Z \neq Y\}$ .

The basis  $\mathcal{I}$  of the 3-induced topology  $\mathcal{O}$  is:

$$\mathcal{I} = \{B(X,1), \ B(X,5), \ B(X,7), \{(U,U,U) \mid U \in V\}, \\ \{(U,U,U), (X,X,Y), (X,Y,Y) \mid U \in V\}, \\ \{(U,U,U), (X,X,Y), (X,Y,Y), (W,W,T), (X,Y,T) \\ \mid W,U,T \in V, W \neq T, T \neq X, T \neq Y\}\}$$

for all  $X, Y \in V$ ,  $X \neq Y$ . The subsets  $\{(X, Y, Z)\}$ ,  $X \neq Y \neq Z$ , are not open and so the 3-induced topology is not discrete.

## REFERENCES

- T.Beth, D.Jungnickel and H.Lenz, Design theory, Manheim-Wien-Zürich, 1985.
- [2] G.ČUPONA, J.UŠAN AND Z.STOJAKOVIĆ, Multiquasigroups and some related structures, Prilozi MANU, Skopje, I/1 (1980).
- [3] G.ČUPONA, Z.STOJAKOVIĆ AND J.UŠAN, On finite multiquasigroups, Publ. Inst. Math. 20 (43) (1981), 53-59.
- [4] J.УШАН,  $\langle N_n, E \rangle$ -Cemu c (n+1)-pacemoshuem, Rewiew of Rechearch Facultu of Sciences University of Novi Sad, Sr. Math. 17 (2) (1989), 65-87.

Prirodno-matematički fakultet 91000 Skopje Prirodno-matematički fakultet 38000 Priština