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SUBDIVISION OF BERSTEIN-BEZIER OPERATORS
USING MULTTAFFINE MAPS

Liusisa M. Koci¢ AND NENAD V. BLAGOJEVIC

ABsTRACT. A generalized subdivision for Berstein-Bezier one- and two-di-
mensional trigngular operators in the domain of images is oblained. Some applica-
{ions in geomeiric modelling of curve segments and triangular paiches are given.

1. Introduction. The technique of multiaffine mapping is applied to the
analysis of the difference formulas of the form B, 1 — B,,, where B, is n-th Berstein-
Bézier operator

(1) Bn:{Pij}—""Fna PijELa i,je{(},...,n}, I'-I-j:ﬂ,

which maps an affine space L (of an arbitrary finite dimension), in the space of
parametric polynomials of degree not greater than n. A polynomial of order n is
any function I, : I — L, where I is a finite dimensional affine space, provided that
any Descartes coordinate of the point F),(u) is a polynomial in the coordinates of the
point u. Note that this condition does not depend on choosing the coordinate origin
in I or L. In the case dim(Ii: 1, F, is a polynomial curve while for dim(I) = 2,
it is a polynomial surface. The space I is an affine parametric space for Fl, mostly
being a parametric polynomial map. Subdivison of the operator B, is any map of
the type (1) so that

J . J J J . .
(2) Bn{PZJ}_}F> PijELJ t+ ] =n,

n

where F is a restriction of a polynomial Fj, on the affine parametric subspace
J C I. The function I : I — L is an affine if it preserves affine combination, i.e. if

F((1=Au+ M) = (1—N)F(u)+AF(v), AER,

The n-variable function is multiaffine or n-affine if it is affine on each of its
arguments when other are fixed. It is known that the set of polynomials of degree

n is equivalent to the set of n-affine mappings. This equivalence can be applied

very fruitfully to studying parametric polynomial curves and surfaces, especially in
computer alded geometric modeling applications. That was firstly observed by a
French mathematician Paul de Faget de Casteljau [1]. Similar ideas for B-splines
go back to Carl de Boor in his works from 1986 and 1987. An exhaustive three-year
study by Lyle Ramshaw [4] crowned the theory. According to Ramshaw’s words,
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his work was initialized by one-day search for a good way to label some diagrams of
splines. His research is performed independently of de Casteljau and de Boor. We
shall use two theorems from [5]:

THEOREM 1. Ewery polynomial F : I — L of degree n is equivalent to the sym-
melric, n-affine map f : I" — L. In particular, given a function of either type,
unique funclion of the olher type exisis, so thai the ideniity

(3) | flu, ..., u) = F(u).

15 satisfied. Then, f is the multiaffine blossom or polar form of the polynomial F,
while F' is a diagonal of f.

The operation of finding f for a given F' is known as polarization. The reverse
operation, defined by (3) is diagonalization.

Polarization can be performed in a few ways (in [6] Ramshaw suggest cight)
but the simplest way uses the elementary symmetric functions

Jk(uli""u”) = Z u'il % uﬁin’ Jr € {0’1}:
j1+"'+jn—k

‘and replace t* in the monomial representation of the polynomial ¢ — F,(t) by
the term op(uq,.. un)/(”), k= 0,...,n. But no simple relationship between

the coefficients of Fn , represented via monormal basis {1,¢, 1"}, and its
polar form f 1s known. On the other hand, representation 'via Bernstein basis

{B§,(1),. no(t)} is given by

- n! % . A
(4) Bij(t):ﬁuv", i+j=n, tel=][a,b],
where (u, v) are the barycentric coordinates of the point ¢ € ﬁ(] a)/(b— a)
v=(b— t)/(b — a). It allows a very simple relation betwe (_en the coefficients P;; of
the polynomial
(5) Fat)= ) PyBR(t), té€lq,b)],
i+j=n

and its polar form.
THEOREM 2. If F,, is a n-degree polynomial given by (5) and f is its polar form,
then
(6) Bie = Fllses 09805 5,300
P g’ W e
i
It is customary to call P;; the Bézier points, or poles.

A characteristic that gives an extraordinary power to the theory of multiaffine
maps is its independence of the affine parametric space I. So, for example, in the
case when dim(J) = 2, the analogy with (5) is formulas are valid for the operators

(7) BA {Psy} — F n; FPiir €L,
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where F/2 are two-variable polynomial on the triangle domain A from R? . These

are known as the Bernstein-Bézier operators on triangles. Polynomials F2 are given
by

(8) F2(p)= Y. PuBlip), pel,
i+j+k=n

where the basis polynomials
n nl ok
(9) Bi(p) = mﬂ vYwt, peA

are functions of barycentric coordinates (u, v, w) of the point p with respect to the

triangular domain A. If f2 is the polar form of the polynomial F2, then the Bézier
points P are given by

10 Thsn = e ead M8 s bsmen
J

where r, 5 and ¢ are vertices of the triangular fragment A.

2. Difference formulae and subdivision. Consider two Bernstein-Bézier
operators Bp and Bg of the form (1) where P = {Pj;}itj=n, @ = {Qi; }iti=n+1,
so that ¢t — Bp(t) and ¢ — Bg(t) are corresponding polynomials of degree n and
n -+ 1 respectively. The difference By — Bp is also the polynomial of degree n + 1,

for ex.
BR(t):BQ(i)—BP(t), tE[a,b],

or, after polarization
bq(ul, — un_l_l) = bp(ul, Caey u,,_) + bR(ul, Sp— 'un_H),
which, after raising the degree of bp for one (p. 58 [4]) gives

1 ni1

(11) bq(ul, o -;Un—ivl) = pr(ul, ey Ty ey un_*_lj +br(ws, ..o, Uns),
k=1

n—+1

where @ means that variable uj should be omitted. Substituting Wy e W 25
@, ¥jg1,..., U, = b in (11) and applying Theorem 2, we get

(12) Qi =y

= 1Pz'—1,j -

J P
——n+1Pi,j—1+Rija i+j=n+Ll

It is shown in [2] that, under the conditions Py, = @o,n+1y Pno = Qny1,0 , the
poles R;; in (11) have the representation

(13) RZJ = nz(n+ 1)20'1_}:
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where a;; 1s an arbitrary set of vectors from the linear space, associated with the

afline space L. Similar is valid for polynomials over a triangular domain A = (r, s, 1).
Namely, from the difference

BS(») - B5(p) = Ba(p), peA

one can derive

T n+1 i
(14) bg(ut, o _,un_H) = 'n,——|-1 Z b}/';‘(ul, e L T ,un+1)b§‘(u1, . .,Un+1),
k=1

which differs from (11) in variables ug being ordered pairs uy = (ut,u}) rather
than numbers. So, keeping the first multiset of i variables on the value r, the
second multiset of j variables on s and the third on ¢, we get

Pij-1k+ Pijk-1+ Rijg, i+j+k=n+1

j
P1w1,j!k + ',‘1+ 1

_ i
(15) Quk = _71_+ 1

It has been shown in [2] that, under conditions Py o, = Qo,0,n+1, Pon,0 =
Qon+1.0; Fn,o,0= Gnt1,00 it holds

ij + ik + jk

() it = e

Qijk,

where {ajjz}, i+ J + k= n+ 1 is an arbitrary set of vectors. Suppose Bf is a
Berstein-Bézier polynomial derived by subdivision of the operator B;, given by (2).
In the case that J = [¢,d] C [a,b], the poles of the restriction B} are given by

(17) P{_;:f(c,‘..,c,d,...,d).
j i
Similarly, if J is a triangle (71, s1,21) that lies in the triangle A = (r, s, 1),
(].8) Pz-}f-k:f(?’l,...,7'1,81,..‘,31,'61,...,tl.
i J k
Combining (12), (13), (15) and (16) we get an essential generalization of the
subdivision formula for PC‘)T
S —
n?(n+1)2 ¥

7_ & .7 T =g
(19) 5= mpi—l,j + mpi,jfl +

i.e.
7 tj + ik + jk

) i k
20 Jo=no-—pr o4+ 2 pJ " pJ. S PR Tl
( ) ijk n4+1 s—l,],k+n+1Pz,J—1,L+ Pz,_',',kfl ng(n_l_])g

n41 Wik
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3. Applications. Beside the theoretical significance, formulas (19) and (20)
have a practical value ag well. Namely, if a polynomial curve of order n is glven and
if its Bzier points are given, it is possible to calculate new Bzier points P;; in a stable
and simple way, using (17). These new points, in turn, control the corresponding
subsegment of the curve, so, we can change the form of the subsegment which at
the time becomes of one degree higher. The iterative application of this algorithm
leads to the satisfactory method for modeling a curve segment [2].

The analogous treatliment is possible for a triangular fragment B? (p), with the
difference that in the case, we have (n+ 2)(n + 3)/2 vectors a;;z. Adjusting these
vectors separately, or put a;;; = a for all 4, j, k allows to change the patch. By (20),

we can also change the form of each subpatch By separately.

As an illustration of our method, we present two examples. In the first one we
subdivide the cubic triangular patch with respect to the point from the interior of
the domain and then after three subpatches using the algorithm (20). The starting
patch is shown at Figure 1 (left) together with the modified patch (right). The
second example considers fifth degree patch and its generalized subdivision, sce
Figure 2.

4. Conclusion. In this paper, the way of deriving some generalized subdi-
vision of the Berstein-Bézier operator using the technique of multiafline maps is
presented. This technique is particularly eflicient when we are working with poles
rather then wilh basic functions. The first one is applicable for one-dimensional
Berstein-Bézier operator, while the second is valid for two-dimensional operator de-
fined on a triangle. Both algorithms describe the same process: rising the degree
and modifying the poles of the subdivided restrictions of the operator’s represen-
tation. Both algorithms include sets of vectors that can be used for adjusting the
shape of segment or patch that being graphs of the corresponding operators.
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Subdivision of third order Bernstein-Bézier
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