FILOMAT-20, Niš, September 26-28, 1991

SEMIGROUPS IN WHICH THE RADICAL OF EVERY IDEAL IS A SUBSEMIGROUP

STOJAN BOGDANOVIĆ AND MIROSLAV ĆIRIĆ

Abstract. In this paper we consider semigroups S in which $\sqrt{A} = \{x \in S \mid (\exists n \in \mathbb{Z}^+) \ x^n \in A\}$ is a subsemigroup of S for every ideal A of S.

1. Introduction and preliminaries

Throughout paper, by \mathbb{Z}^+ we denote the set of all positive integers. If $a,b\in S$, then $a\mid b$ iff b=xay for some $x,y\in S^1$, $a\mid b$ iff ax=b for some $x\in S^1$, $a\mid b$ iff a=b for some $x\in S^1$, $a\mid b$ iff $a\mid b$ and $a\mid b$, $a\longrightarrow b$ iff $a\mid b^i$ for some $i\in \mathbb{Z}^+$ and $a\stackrel{h}{\longrightarrow} b$ iff $a\mid b^i$ for some $i\in \mathbb{Z}^+$, where h is r,l or t. A semigroup S is Archimedean (right Archimedean, t-Archimedean, power joined) iff for all $a,b\in S$, $a\longrightarrow b$ ($a\stackrel{r}{\longrightarrow} b$, $a\stackrel{t}{\longrightarrow} b$, $\langle a\rangle \cap \langle b\rangle \neq \emptyset$). By the radical of the subset A of a semigroup S we mean the set \sqrt{A} defined by

$$\sqrt{A} = \{ x \in S \mid (\exists n \in \mathbf{Z}^+) \ x^n \in A \}.$$

If S is a semigroup with the zero 0, then an element $a \in S$ is a nilpotent if there exists $n \in \mathbb{Z}^+$ such that $a^n = 0$, and the set of all nilpotents of S we denote by Nil(S).

T.Tamura and N.Kimura [12] showed that every commutative semigroup is a semilattice of Archimedean semigroups. This well known result has since been generalized by many authors [2-13]. Semigroups which are semilattices of Archimedean semigroups are completely described by M.S.Putcha [7], T.Tamura [10] and by M.Ćirić and S.Bogdanović [4]. M.S.Putcha [7] has proved the following

Theorem P. A semigroup S is a semilattice of Archimedean semigroups if and only if

$$a \mid b \implies a^2 \longrightarrow b$$

for all $a, b \in S$. \square

Supported by Grant 0401A of Science Fund of Serbia through Math. Inst. SANU 1991 Mathematics subject classification. Primary: 20M10

These semigroups are, also, completely described by M.Ćirić and S.Bogdanović in [4] by the following

THEOREM CB. The following conditions are equivalent on a semigroup S:

- (i) S is a semilattice of Archimedean semigroups;
- (ii) $(\forall a, b \in S) \ a^2 \longrightarrow ab;$
- (iii) the radical of every ideal of S is an ideal of S. \square

Л.Н.Шеврин [14] showed that the equivalence $(i) \iff (iii)$ of Theorem ĆB. holds if S is completely π -regular $((\forall a \in S)(\exists x \in S)(\exists n \in \mathbf{Z}^+) \ a^n = a^n x a^n, \ a^n x = x a^n)$.

In this paper we characterize semigroups in which the radical of every ideal (right ideal, bi-ideal, subsemigroup) is a subsemigroup (or ideal or bi-ideal or right ideal).

For undefined notions and notations we refer to [1].

2. Main results

Theorem 1. The following conditions on a semigroup S are equivalent:

(i) the radical of every ideal of S is a subsemigroup of S;

(ii) in every homomorphic image with zero of S the set of all nilpotent elements is a subsemigroup;

 $(iii) \quad (\forall a,b \in S)(\forall k,l \in \mathbb{Z}^+) \ a^k \longrightarrow ab \quad \lor \quad b^l \longrightarrow ab.$

PROOF. (i) \Longrightarrow (iii). Let $a,b\in S,\ k,l\in {\bf Z}^+$. Since $A=S\{a^k,b^l\}S$ is an ideal of S and $a,b\in \sqrt{A}$ we then have by hypothesis that $ab\in \sqrt{A}$. Hence, there exists $n\in {\bf Z}^+$ such that $(ab)^n\in S\{a^k,b^l\}S$. Thus $a^k\longrightarrow ab$ or $b^l\longrightarrow ab$.

- (iii) \Longrightarrow (ii). Let T be a semigroup with the zero element and let T be a homomorphic image of S. Then the condition (iii) holds in T. For every $a,b\in Nil(T)$ there exist $m,l\in {\bf Z}^+$ such that $a^k=b^l=0$, and thus $(ab)^n\in T\{0,0\}T=\{0\}$, for some $n\in {\bf Z}^+$. Therefore, Nil(T) is a subsemigroup of T.
- (ii) \Longrightarrow (i). Let A be an ideal of S. Let φ be a homomorphism of S onto S/A. Let $a,b \in \sqrt{A}$. Since $\varphi(a), \varphi(b) \in Nil(S/A)$ we then have that $\varphi(a)\varphi(b) \in Nil(S/A)$, i.e. $\varphi(ab) \in Nil(S/A)$ and thus $(ab)^n \in A$ for some $n \in \mathbb{Z}^+$. Hence $ab \in \sqrt{A}$, i.e. \sqrt{A} is a subsemigroup of S. \square

In a similar way as in the previous theorem it can be proved the following

Theorem 2. \sqrt{R} is a subsemigroup of S, for every right ideal R of S if and only if

$$(\forall a, b \in S)(\forall k, l \in \mathbb{Z}^+) \ a^k \xrightarrow{r} ab \ \lor \ b^l \xrightarrow{r} ab. \ \Box$$

Theorem 3. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of Archimedean semigroups;

(ii) $(\forall a, b \in S) \ a \mid b \implies a^2 \longrightarrow b;$

(iii) \sqrt{SaS} is an ideal of S, for all $a \in S$;

(iv) in every homomorphic image with zero of S the set of all nilpotent elements is an ideal.

PROOF. By Theorems P. and ĆB.

Theorem 4. The radical of every right ideal of a semigroup S is a bi-ideal of S if and only if

$$(1) \qquad (\forall a, b, c \in S)(\forall k, l \in \mathbb{Z}^+) \ a^k \xrightarrow{r} abc \ \lor \ c^l \xrightarrow{r} abc \ .$$

PROOF. Let $a, b, c \in S$ and let $k, l \in \mathbb{Z}^+$. Assume that $R = \{a^k, c^l\}S$. Since $a, c \in \sqrt{R}$ and \sqrt{R} is a bi-ideal of S we then have that $abc \in \sqrt{R}S\sqrt{R} \subseteq \sqrt{R}$, i.e. there exists $n \in \mathbb{Z}^+$ such that $(abc)^n \in R = \{a^k, c^l\}S$. Thus $a^k \stackrel{r}{\longrightarrow} abc$ or $c^l \stackrel{r}{\longrightarrow} abc$.

Conversely, let R be a right ideal of S. For $a, c \in \sqrt{R}$ there exist $k, l \in \mathbb{Z}^+$ such that $a^k, c^l \in R$. Now by (1) we have that

$$\{a^k, c^l\}S \subseteq RS \subseteq R$$

for some $n \in \mathbb{Z}^+$. Hence, $abc \in \sqrt{R}$. Therefore, \sqrt{R} is a bi-ideal of S. \square

THEOREM 5. The following conditions on a semigroup S are equivalent:

- (i) S is a semilattice of right Archimedean semigroups;
- (ii) $(\forall a, b \in S)(\forall k \in \mathbb{Z}^+) b^k \xrightarrow{r} ab;$
- (iii) the radical of every right ideal of S is a left ideal of S.

PROOF. (i) \Longrightarrow (ii). Let S be a semilattice Y of right Archimedean semigroups S_{α} , $\alpha \in Y$. Then for $a \in S_{\alpha}$, $b \in S_{\beta}$ we have that $ab, b^k a \in S_{\alpha\beta}$, for all $k \in \mathbb{Z}^+$, and there exists $n \in \mathbb{Z}^+$ such that

$$(ab)^n \in b^k a S_{\alpha\beta} \subseteq b^k S$$
.

Thus $b^k \xrightarrow{r} ab$.

 $(ii) \implies (i)$. This implication follows by Proposition 1.1.[2].

(ii) \Longrightarrow (iii). Let R be a right ideal of S. Assume that $a \in S$, $b \in \sqrt{R}$. Then $b^k \in R$, for some $k \in \mathbb{Z}^+$, and we have that

$$(ab)^n \in b^k S \subseteq RS \subseteq R ,$$

for some $n \in \mathbb{Z}^+$. Thus $ab \in \sqrt{R}$, i.e. \sqrt{R} is a left ideal of S.

(iii) \Longrightarrow (i). Let $a, b \in S$, R = bS. Then $b \in \sqrt{R}$. Since \sqrt{R} is a left ideal of S we then have that $ab \in \sqrt{R}$, i.e. there exists $n \in \mathbb{Z}^+$ such that $(ab)^n \in R = bS$, whence by Proposition 1.1.[2] we have that the condition (i) holds. \square

Theorem 6. The following conditions on a semigroup S are equivalent:

- (i) $(\forall a, b \in S) \ a \mid b \implies a^2 \xrightarrow{r} b;$
- (ii) $(\forall a, b \in S)(\forall k \in \mathbb{Z}^+) \ a^k \xrightarrow{r} ab;$
- (iii) $(\forall a, b \in S) \ a^2 \xrightarrow{r} ab;$

(iv) \sqrt{aS} is a right ideal of S, for every $a \in S$;

(v) \sqrt{R} is a right ideal of S, for every right ideal R of S.

PROOF. (i) \Longrightarrow (iii). Since $ab \in aS$ for every $a, b \in S$, we then have that $(ab)^n \in a^2S$. Thus $a^2 \xrightarrow{r} ab$.

 $(iii) \implies (ii)$. By induction.

(ii) \Longrightarrow (i). Let b = au for some $u \in S$. Then there exists $n \in \mathbb{Z}^+$ such that $b^n = (au)^n \in a^2S$. Thus $a^2 \xrightarrow{r} b$.

(ii) \Longrightarrow (iv). Let $x \in \sqrt{aS}$ and let $b \in S$. Then $x^k \in aS$ for some $k \in \mathbb{Z}^+$. Since

$$(xb)^n \in x^k S \subseteq aSS \subseteq aS$$
 , for some $n \in \mathbb{Z}^+$

we then have that $xb \in \sqrt{aS}$. Thus \sqrt{aS} is a right ideal of S.

 $(iv) \implies (iii)$. Let $a, b \in S$. Then $a \in \sqrt{a^2S}$. Since $\sqrt{a^2S}$ is a right ideal of S, then $ab \in \sqrt{a^2S}$, and therefore (iii) holds.

 $(v) \implies (iv)$. Since aS is a right ideal of S, by (v) we then have that \sqrt{aS} is also right ideal of S.

(ii) \Longrightarrow (v). Let R be a right ideal of S. Let $a \in \sqrt{R}$, $b \in S$. Then $a^k \in R$ for some $k \in \mathbb{Z}^+$. Now,

$$(ab)^n \in a^k S \subseteq RS \subseteq R$$
 for some $n \in \mathbb{Z}^+$

and thus $ab \in \sqrt{R}$, i.e. \sqrt{R} is a right ideal of S. \square

Theorem 7. The following conditions on a semigroup S are equivalent:

- (i) S is a normal band of t-Archimedean semigroups:
- (ii) $(\forall a, b, c \in S)$ ac \xrightarrow{t} abc;
- (iii) for every $a, b, c \in S$,

$$a \mid c \wedge b \mid c \implies ab \xrightarrow{t} c$$
.

PROOF. (i) \iff (ii). This equivalence is from [3].

(ii) \Longrightarrow (iii). Let $a \mid c$, $b \mid c$. then there exist $u, v \in S$ such that c = au = vb, whence $c^2 = auvb$. Now, there exists $n \in \mathbb{Z}^+$ such that $c^{2n} = (auvb)^n \in abSab$, i.e. $ab \xrightarrow{t} c$.

(iii) \Longrightarrow (ii). It is clear that $a \mid abc$, $c \mid abc$, for every $a, b, c \in S$. By

(iii) there exists $n \in \mathbb{Z}^+$ such that $(abc)^n \in acS \cap Sac$. Hence, (ii) holds. \square

Theorem 8. The following conditions on a semigroup S are equivalent:

- (i) $(\forall a, b \in S) \ a^2b \xrightarrow{r} ab;$
- (ii) for all $a, b, c \in S$,

$$a \mid c \land b \mid c \implies ab \xrightarrow{r} c$$
.

PROOF. (i) \Longrightarrow (ii). Let c=au=bv for some $u,v\in S$, whence $c^2=(au)^2$. Now, there exists $i\in {\bf Z}^+$ such that

$$c^{2i} = (a(uau))^i \in a^2uauS \subseteq a^2uS = a(au)S = a(bv)S \subseteq abS$$
.

Thus $ab \xrightarrow{r} c$,

(ii) \Longrightarrow (i). It is clear that $a \mid ab, ab \mid ab$, for all $a, b \in S$, and by (ii) we have that $a(ab) = a^2b \xrightarrow{r} ab$. \square

Theorem 9. The following conditions on a semigroup S are equivalent:

- (i) S is a semilattice of t-Archimedean semigroups;
- (ii) $(\forall a, b \in S)(\exists n \in \mathbb{Z}^+) (ab)^n \in bSa;$
- (iii) the radical of every bi-ideal of S is an ideal of S.

PROOF. (i) \iff (ii). This equivalence is from [2].

(ii) \Longrightarrow (iii). Let A be a bi-ideal of S and let $a \in \sqrt{A}$, $b \in S$. Then $a^k \in A$ for some $k \in \mathbb{Z}^+$, whence

$$(ab)^m, (ba)^n \in a^k b S b a^k \subseteq A S A \subseteq A$$
,

for some $m, n \in \mathbb{Z}^+$. Thus $ab, ba \in \sqrt{A}$, i.e. \sqrt{A} is an ideal of S.

(iii) \Longrightarrow (ii). Let $a,b\in S$. Assume that $A=aSa,\ B=bSb$. It is clear that $a\in \sqrt{a},\ b\in \sqrt{B}$. Since \sqrt{A} and \sqrt{B} are ideals of S, we then have that $ab\in \sqrt{A}\cap \sqrt{B}$, i.e. there exist $m,n\in \mathbf{Z}^+$ such that $(ab)^m\in aSa,\ (ab)^n\in bSb,$ whence $(ab)^{m+n}\in bSbaSa\subseteq bSa$. \square

3. More on bi-ideals and radicals

The Theorems 10.-22. can be proved as some of the previous theorems and the proof of any of its will be omitted.

Theorem 10. The radical of every ideal of a semigroup S is a bi-ideal of S if and only if

$$(\forall a, b, c \in S)(\forall k, l \in \mathbb{Z}^+) \ a^k \longrightarrow abc \ \lor \ c^l \longrightarrow abc. \square$$

Theorem 11. The radical of every subsemigroup of a semigroup S is a bi-ideal of S if and only if

$$(\forall a, b, c \in S)(\forall k, l \in \mathbb{Z}^+)(\exists n \in \mathbb{Z}^+) (abc)^n \in \langle a^k, c^l \rangle$$
. \square

Theorem 12. The radical of every bi-ideal of a semigroup $\,S\,$ is a bi-ideal of $\,S\,$ if and only if

$$(\forall a, b, c \in S)(\forall k, l \in \mathbb{Z}^+)(\exists n \in \mathbb{Z}^+) \ (abc)^n \in \{a^k, c^l\}S\{a^k, c^l\}. \ \Box$$

Theorem 13. The radical of every subsemigroup of a semigroup S is a subsemigroup of S if and only if

$$(\forall a, b \in S)(\forall k, l \in \mathbb{Z}^+)(\exists n \in \mathbb{Z}^+) \ (ab)^n \in \langle a^k, b^l \rangle . \square$$

Theorem 14. The radical of every bi-ideal of a semigroup S is a subsemigroup of S if and only if

$$(\forall a, b \in S)(\forall k, l \in \mathbb{Z}^+)(\exists n \in \mathbb{Z}^+) \ (ab)^n \in \{a^k, b^l\} S\{a^k, b^l\}. \ \Box$$

Theorem 15. The radical of every subsemigroup of a semigroup S is a left ideal of S if and only if S is a right zero band of power joined semigroups. \square

Theorem 16. The radical of every subsemigroup of a semigroup S is an ideal of S if and only if S is power joined. \square

Theorem 17. The following conditions on a semigroup S are equivalent:

- $(i) \quad (\forall a,b,c,d \in S) \ b^2 \longrightarrow abcd \quad \lor \quad c^2 \longrightarrow abcd;$
- (ii) for all $a, b, c \in S$,

$$ab \mid c \implies a^2 \longrightarrow c \quad \lor \quad b^2 \longrightarrow c. \ \Box$$

Theorem 18. The following conditions on a semigroup S are equivalent:

- (i) $(\forall a, b, c \in S)$ $a^2 \xrightarrow{r} abc \lor b^2 \xrightarrow{r} abc$;
- (ii) for all $a, b, c \in S$,

$$ab \mid c \implies a^2 \xrightarrow{r} c \lor b^2 \xrightarrow{r} c. \square$$

Theorem 19. The following conditions on a semigroup S are equivalent:

- (i) $(\forall a, b \in S) \ a^2 \xrightarrow{t} aba;$
- (ii) for all $a, b \in S$,

$$a \mid b \implies a^2 \xrightarrow{t} b. \square$$

REFERENCES

- [1] S.Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math. Novi Sad, 1985.
- [2] S.Bogdanović, Semigroups of Galbiati-Veronesi, Proc. of the conf. "Algebra and Logic", Zagreb, (1984), 9-20, Novi Sad 1985.
- [3] S.Bogdanović and M.Ćirić, Semigroups of Galbiati-Veronesi IV, Facta Universitatis (Niš), Ser. Math. Inform. (to appear).
- [4] M.ĆIRIĆ AND S.BOGDANOVIĆ, Decompositions of semigroups induced by identities, Semigroup Forum (to appear).
- [5] J.L.Chrislock, On medial semigroups, J. Algebra 12 (1969), 1-9.
- [6] T.Nordahl, Semigroup satisfying $(xy)^m = x^m y^m$, Semigroup Forum 8 (1974), 332-346.
- [7] M.S.Putcha, Semilattice decomposition of semigroups, Semigroup Forum, 6 (1973), 12-34.
- [8] M.S.Putcha, Bands of t-Archimedean semigroups, Semigroup Forum, 6 (1973), 232-239.
- [9] M.S.Putcha, Rings which are semilattices of Archimedean semigroups, Semigroup Forum, 23 (1981), 1-5.
- [10] T.TAMURA, On Putcha's theorem concerning semilattice of Archimedean semigroups, Semigroup Forum, 4 (1972), 83-86.

- [11] T.TAMURA, Quasi-orders, generalized archimedeaness, semilattice decomposition, Math. Nachr. 68 (1975), 201-220.
- [12] T.TAMURA AND N.KIMURA, On decomposition of a commutative semigroup, Kodai Math. Sem. Rep. 4 (1954), 109-112.
- [13] T. TAMURA AND J. SHAFER, On exponential semigroups I, Proc. Japan Acad. 48 (1972), 77-80.
- [14] Л.Н.ШЕВРИН, Квазипериодические полугруппы, разложимые в связку Архимедовых полугрупп, XVI Всесоюзн. алгебр. конф. Тезисы докл., Л., 1981, Ч1, с.188.

Faculty of Economics 18000 Niš, Trg JNA 11 Yugoslavia

Department of Mathematics Philosophical Faculty 18000 Niš, Ćirila i Metodija 2 Yugoslavia

Current address: Stojan Bogdanović, Faculty of Economics, 18000 Niš, Yugoslavia