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ABSTRACT. Let S be a regular semigroup and let E(S) be the set of all
idempotents of S. Let ConS be the congruence latlice of S and let T,K,U
and V  be equivalences on ConS defined by pTé < trp = trf, pKE <=
kerp = keré, pUé <= pN <=éN< and V = UNK, where trp = plres),
kerp = E(S)p and < is the natural partial order on E(S). I is known that
T, U and V' are complete congruences on ConS and T-, K-, U- and V-classes
are intervals [pn, pT1, [pg, P51, [pys PY1 and [py,, pV], respectively ([11],[9], [8]). 1t
turns out that the union of U-classes for which pU is a semilatiice congruence is
the lattice CRConS of all completely regular congruences on S and the union
of V-classes for which p¥ is an inverse congruence is the latlice OConS of
all orthodox congruences on 5. Also, several complete epimorphisms of the form
p—pY and p— p¥ are obtained.

1. Preliminaries

In the following we shall use the terminology and notations from [4] and [10].
Throughout the paper, S stands for a regular semigroup. If p € ConS and «
is an equivalence on 5/p, then the equivalence @ on S defined by a b <=
(ap) a (bp), (a,b € S). If o isany relationon S then o* denotes the congruence
on S generated by «. If « isanequivalence on S then «® denotes the greatest
congruence on S contained in « andif T C S then Tea denotes the union of
wa-classes of all elements of 7.

Let p € ConS. If € 1s a class of semigroups and if S5/p € €, then we
say that p is a C-congruence. In the paper, o, 7, @, v,), o denote the least
group, semilattice, rectangular band, Clifford, inverse and orthodox congruence,
respectively.
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LEvma 1. Lel € be a class of semigroups elosed for homomorphic images and
let y=17¢ be the least C-congruence on S. Then

(1) p is a C-congruence on S if and only if p 2 7;
(2) Tspe = (V) p for any p € ConS.

For a € S, let V(a) denote the set of all inverses of @ in $§. Let
and V be equivalences on S defined by e U b <= V(a)H = V(6){ and
aVb < V(a)=V(b).

Resurr 1. [8] If p,£ € ConS, then

(1) PT(E — HSIP :HSIE and PT :HS/p » Pp = (trp)* ;

—— = e
(1) pUE = Usjp=Us;e and p¥ =Us, , p, = (pN <)*;
(1) pVE€ <= Vs, =Vsie and p¥ =Vgy, .

As a consequence we have ¢f = H°, £V =u°, Wy = (£)* and ¥ =V°,
where £ is the equality and w is the umversal relatlon on S.

ResunT 2. [7] Let L be a complete laltice and lel C be a complete congruence
on L. Then for any = € L the C-class zC is the interval [zc,2%] of L.
Forany ACL,

W =V i ¢ = ¢
(ZE.‘IL‘)C IEAJ:C ? <a:/E\Am) :II/E\Am

2. Completely regular congruences

In this section we establish certain characterizations of completely regular con-
gruences.

Lesna 2. For a vegular semigroup S, 1he following conditions are equivaleni:
(i) S is completely regular;
(i) n=1U;
(id) n CU.

Lemma 3. Let p,£ € CRConS. Then pUE ifand only if pVn=£V.

TrHEOREM 1. For p € ConS, the following conditions are equivalend:
(i) p is a completely regular congruence;
(i) pY is a semilallice congruence;
(#7) p¥ =pVvuy;
(iv) pU(pV 7).
REMARK 1. From Lemma 3. and by the implication (i) = (iii) of Theorem
1. we gel Proposition 8.1. of [8].

Let 5ConS denote the lattice of all semilattice congruences and Iet i =gT
be the greatest idempotent separating congruence on S.
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ConoLrLAary 1. The following condilions hold:
(1) CRConS = [n,,w]=[n,w]U and qU = [n,,7);
(2) SConS =[n,w]={pe CRConS | pV = p};
(3) pCu° Co.

COROLLARY 2. For S the following conditions are equivalent:
(i) S is completely regular;
(27) (Vp € ConS) p¥ =pvu;
(’l”) n= U“;
(ivy eUn.

The following result is an analogue of Theorem 1. [1].

THEOREM 2. For p & ConS, the following conditions are equivalent:
(1) p is a complelely simple congruence;
(i) pT s a rectangular band congruence;
(iti) pT =pV a;
(iv) ¢T(pV a);
(v) pUw.

Let CSConS (RBConS denote the lattice of all completely simple (rectan-
gular band) congruences on S. Then we have

COROLLARY 3. The following conditions hold:
(1) CSConS = [ag,w] = [o,w]T and oT = [evg, ]
(2) RBConS = [a,w] = {p € CSConS | pT = p};
(3) ap= (ira)® = (<)"

CoroLLary 2. For S, lhe following conditions are. equivalent:
(i) S 1s a completely simple;
(11) (Vp € ConS) pT =pV a;
(it1) p=o;
(fv) U° = w;
(v) eUw.

3. Orthodox congruences

Now we deseribe orthodox congruences on § in terms of X and V.
Resurr 3. [3] If S is any orthodox semigroup, then V = V.
LEMMA 4. Let p,£ € OConS. Then pVE if and only if pVY =£EV Y.

TuEorEM 3. For p € ConS, the following conditions are equivalent:
(i) p is an orthodox congruence;
(i1) p¥ s an inverse congruence;
(ii) p¥ =pVY;
() pV(pVY);
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(v) PE(pVY);

vi K s an inverse congruence;
(vi) p g ;
(vii) kerp is a subsemigroup of 5.

REMARK 2. From Lemma 4. and by the implication (i) = (i) of Theorem
3. we get Proposition 8.5. of [8], and from (i) => (v) we get oK} [5] and
Lemma 2.1. of [2].

Let IConS denote the set of all inverse congruences on S.

COROLLARY 5. The following conditions hold:
(1) OConS = [o,w] =[Y,w]V and YV =[0,V];
(2) IConS = [YV,w] = {p € OConS | p¥ = p};
(3) v Cl.

COROLLARY 6. For S the following conditions are equivalent:
(1) S is orthodoxz;
(i) (¥p € ConS) p¥ =pVY;
(t57) Y CV;
(iv) Y=V
(v) kery = E(S),
(vi) eV).

In the following we describe orthodox completely simple and orthedox com-
" pletely regular congruences.

THEOREM 4. For p &€ ConS, the following conditions are equivalent:
(i) p is a rectangular group congruence;
(ii) p¥ is a group congruence;
(iii) p¥ =pVo;
(iv) pV(pV o).
Let RGConS (GConS) denote the lattice of all rectangular group (group)
congruences on S. Then we have

CloroLLARY 7. The following condilions hold:
(1) RGConS = [oy,,w] = [o,w]V and oV =0, 0];
(2) GConS = [o,w]={p € RGConS | p" = p}.

COROLLARY 8. Let p, & € RGConS. Then pVE if and only if pNo =EVo.

CoROLLARY 9. For S tihe following conditions are equivalent:
(i) S is a rectangular group,
(i) (Yp € ConS) o = pV o;
(ii)) V° =o;
(iv) eVeo.
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THEOREM 5. For p € ConS, ihe following condifions are equivalent:
(i) p is an orthogroup congruence;
(ii) p¥ is a Clifford congruence;
(iit) oV =pVu;
(i) pV(p V).
Let OGConS (SGConS) denote the lattice of all orthogroup (Clifford)
COngriuences. Then we have

CoRroLLARY 10. The following conditions hold:
(1) OGConS = [vyywl=ulV and vV =[r.0);
(2) SGConS = [v,w] = {p € OGConS | p¥ = p}-

COROLLARY 11. Let p,§ € OGConS. Then pVE if and only if pvv = EVw.

COROLLARY 12. For S the following conditions are equivalent:
(i) S is an orthogroup;
i) (Yp € ConS) p¥ =pVu;
(#17) V°® =v;
(iv) V.

4, Some complete epimorphisms

Using the results of Theorems 1-5. and the Result 2. we get the following

THEOREM 6. Let S be a regular semigroup. The mappings

w1: CRConS — SConS defined by pi(p)=pv 1y .

@2: CSConS — RBConS  defined by  p2(p) =pV a

w3: OConS — IConS defined by  @3a(p)=pV Y ,

pa: RGConS — GConS defined by  wa(p)=pV o ,

ps5: OGConS — SGConS  defined by  @s(p)=pV v ,
are complete epimorphisms. The classes of the compleie congruence ¥ induced
by the epimorphism ¢ are U-classes, if ¢ =1, T-classes, if ¢ =2 and
V-classes, if ¢ =i, 1=3,4,5.

COROLLARY 13. The following conditions hold:

(1) (np)vn= 0 (pVvn), (FCCRConS);
pEF pEF

(2) (Nnp)va= N(pVa), (FCCSCons);
peER pEF

@) (NpVY=0(pVY), (FCOConS);
pEF peEF

(4) (pQFp) Vo= pQF(p v o), (FCRGConS);

5) (np)Vr= Nn(pVr), (FCOGConS).
PEF PEF

REMARK 3. From (i) of this corollary we get Theorem 4.7. of [6], and from
(ii1) we get Theorem 2.4. of [2].




128 B.Alimpié and D.Krgovi¢

REFERENCES

[1] B.P.ALmpié anp D.N.KrGovié, Some congruences on reqular semigroups,
Proc. Conf. Oberwolfach 1986, Lect. Not. Math. 1320, Springer-Verlag, 1-9.
[2] C.EBERHART aND W.WILLIAMS, Congruences on an orthodox semigroup via
the minimum inverse semigroup congruence, Glasgow Math. J. 18 (1977), 181-
192.
(8] T.E.HarL, On regular semigroups whose idempotents Jform a subsemigroup,
Bull. Austral. Math. Soc. 1 (1969), 195-208.
[4 T.M.HowiE, An Introduction o Semigroup Theory, Academic Press, London
1976.
[5] P.R.JonEs, The least inverse and orthodox congruences on a complelely reg-
ular semigroup, Semigroup Forum 27 (1983), 390-392.
[6] P.R.JONES, Joins and meets of congruences on a regular semigroup, Semi-
group Forum 30 (1984), 1-16.
[7] F.PASTIIN AND M.PETRICH, Congruences on reqular semigroups, Trans. Amer.
Math. Soc. 295 (1986), 607-633.
[8] F.PastuN AND M.PETRICH, The congruence lattice of a regular semigroup,
J. Pure Appl. Algebra 53 (1988), 93-123.
[9] F.PasTiN aAND P.G.TROTTER, Lailices of completely regular semigroup va-
rieties, Pacific J. Math. 119 (1985), 191-214.
[10] M.PETRICH, Structure of regular Semigroups, Cahier Math., Montpellier,
1977.
[11] N.R.REmLY aNp K.E.ScHEIBLICH, Congruences on regular semigroups, Pac.
J. Math. 23 (1967), 349-360.

Matematicki fakultet Matemati¢ki Institut SANU
Studentski trg 16 Knez Mihailova 35
11001 Beograd 11001 Beograd

p.p- b50 p.p. 367




	1.pdf (p.1-30)
	2.pdf (p.31-60)
	3.pdf (p.61-90)
	4.pdf (p.91-122)
	5.pdf (p.123-152)
	6.pdf (p.153-182)
	7.pdf (p.183-196)



