FILOMAT-20, Niš, September 26-28, 1991

THE CARLESON MEASURE, THE NEVANLINNA-AHLFORS-SHIMIZU CHARACTERISTIC FUNCTION AND APPLICATIONS ŽARKO PAVIĆEVIĆ

ABSTRACT. In this paper, I have gathered together some results I have proved for the Carleson measures in the unit disc |z| < 1 in terms of a new characteristic function. In the case of meromorphic functions, the introduced characteristic function becomes the Nevanlinna characteristic function in the form of Ahlfors-Shimizu. The new characteristic function is used to obtain the necessary and sufficient conditions for a meromorphic function to belong to the class BC of functions with the bounded Nevanlinna characteristic, to the class UBC of functions with the uniformly bounded Nevanlinna characteristic, and for a holomorphic function to belong to the Hardy spaces H^p , $0 , to the hyperbolic Hardy classes <math>H^p$, 0 , to the classes BMO and BMOA.

1. Preliminaries. For a measurable function $u(z) \ge 0$ defined in the unit disc D: |z| < 1 on the complex z-plane, we introduce the characteristic function P(r, u) in the form

$$P(r, u) = \int_0^r \frac{S(t, u)}{t} dt, \quad 0 < r < 1,$$

where

$$S(t, u) = \frac{1}{\pi} \iint_{|z| < t} [u(z)]^2 dx dy, \quad z = x + iy, \quad 0 < t < 1,$$

and put $P(1, u) = \lim_{r \to 1} P(r, u)$.

If f(z) is a meromorphic function in D and

$$f_p^{\#}(z) = \frac{1}{2} p |f'(z)|^{\frac{p}{2}-1} |f'(z)| (1+|f(z)|^p)^{-1}, \quad 0$$

then $P(r, f_p^{\#}(z)) = \frac{1}{2}pT_p(r, f)$, where $T_p(r, f)$ is the characteristic for the meromorphic function f(z) introduced by S. Yamashita [5]; for p = 2 we get $T_2(r, f) = T(r, f)$, the Nevanlinna characteristic function of f(z) in the Ahlfors-Shimizu form.

AMS MSC (1980): 30D35, 30D55.

LEMMA 1. Let $S(r, u) < \infty$, for any r, 0 < r < 1. Then

$$P(r,u) = \frac{1}{\pi} \iint_{|z| < r} [u(z)]^2 \ln \frac{r}{|z|} dx dy, \quad z = x + iy,$$

for any r, $0 < r \le 1$.

Lemma 1 is proved in [1].

For the Green potential

$$W(w) = \iint\limits_{|z|<1} \ln \left| \frac{1 - \bar{w}z}{z - w} \right| dx dy, \quad z = x + iy, \quad w \in D,$$

we proved in [2] the following lemma

LEMMA 2. If W(w) is a Green potential in D, then

$$W(w) = \frac{1}{2}\pi(1 - |w|^2), \quad w \in D.$$

Let $\varphi_w(z) = \frac{z+w}{1+\bar{w}z}$, $w \in D$ is fixed, and $u_w(z) = u(\varphi_w(z))|\varphi_w'(z)|$; obviously, $u_0(z) = u(z)$.

LEMMA 3. Let $u(z) \ge 0$ be a measurable function in D. The following assertions are equivalent:

(i)
$$\iint_{|z|<1} (1-|z|)[u(z)]^2 dxdy < \infty, \quad z = x + iy$$

(ii)
$$\iint_{|w|<1} P(1, u_w) d\xi d\zeta < \infty, \quad w = \xi + i\zeta.$$

Lemma 3 is proved in [1].

For a measurable function $u(z) \geq 0$ defined in the unit disc D we introduce the differentiable form $d\mu_u(z) = (1-|z|^2)[u(z)]^2 dxdy$, z = x+iy, and the measure $\mu_u(E) = \iint_E d\mu_u(z)$ generated by $d\mu_u(z)$ on a Borel set $E \subset D$. Let

$$Q(\mu_u, w) = \frac{1}{2\pi} \mu_u(R(w)) \cdot (1 - |w|)^{-1},$$

where $R(w) = \{z \in D; |w| < |z| < 1, |\arg z - \arg w| < \pi \cdot (1 - |w|)\}$ for $w \neq 0$, and R(w) = D for w = 0. The measure μ_u is called the Carleson measure if $\sup_{w \in D} Q(\mu_u, w) < \infty$ (cf. [6]).

LEMMA 4. The measure μ_u generated by the differentiable form $d\mu_u(z) = (1-|z|)[u(z)]^2 dxdy$, z=x+iy, $z\in D$, is the Carleson measure if and only if

$$\sup_{|\xi|<1} \iint_{|w|<1} P(u_w, 1) \cdot |\varphi_{\xi}'(w)| du dv < \infty, \quad w = u + iv$$

Lemma 4 is proved in [4].

2. A meromorphic function f(z) defined in D belongs to the class BC, if $T(1,f)<\infty$.

Theorem 1. For a meromorphic function f(z) in D and for any p, 0 , the following assertions are equivalent:

(i)
$$f(z) \in BC$$
;

(ii)
$$\iint\limits_{|w|<1} P(1, (f_p^{\#})_w) du dv < \infty, \quad w = u + iv.$$

Theorem 1 is proved in [1].

Following S.Yamashita, [7], a meromorphic function f(z) defined in D is called a function with uniformly bounded characteristic if $\sup_{w \in D} T(1, f_w) < \infty$; f(z) belong to the class UBC.

Theorem 2. For a meromorphic function f(z) in D the following assertions are equivalent:

- (i) $f(z) \in UBC$
- (ii) The measure μ_f , μ_f generated by the differentiable form $d\mu_u(z) = (1-|z|^2)[f^{\#}(z)]^2 dxdy$, z=x+iy, is Carleson measure;

(iii)
$$\sup_{w \in D} \iint_{|z| < 1} T(1, f_z) |\varphi_w'(z)| dx dy < \infty, \quad z = x + iy.$$

Theorem 2 is proved in [3].

3. If f(z) is a holomorphic function in D, we put $f_p^*(z) = \frac{1}{2}p|f(z)|^{\frac{p}{2}-1}|f'(z)|$, $0 . Then <math>0 \le f_p^*(z) \le \infty$ and $f_p^*(z) = \infty$ at the zeros of f(z). If p = 2, then $f_p^*(z) = |f'(z)|$ (cf. [8]).

THEOREM 3. For a holomorphic function f(z) in D and for any p, 0 , the following assertions are equivalent:

- (i) f(z) belongs to the Hardy class H^p ;
- (ii) $P(1, f_p^*) < \infty;$

(iii)
$$\iint\limits_{|w|<1} P(1,{(f_p^*)}_w)dudv < \infty, \quad w = u + iv.$$

Theorem 3 is proved in [1].

Let B denote the class of holomorphic functions f(z) in D for which |f(z)| < 1 in D. For a functions $f(z) \in B$, let $f^h(z)$ denote the hyperbolic derivative of f(z); i.e. $f^h(z) = |f'(z)|(1 - |f(z)|)^{-1}$. Consider $\lambda(f(z)) = \lambda(f) = \lambda(f)$ $-\ln(1-|f(z)|)$.

Following S. Yamashita [9], we say that a function $f(z) \in B$ belongs to the hyperbolic Hardy class H_h^p , 0 ; if

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} \left(\sigma(f(z)) \right)^p d\theta < \infty, \quad z = re^{i\theta},$$

where
$$\sigma(f(z)) = \frac{1}{2} \ln \frac{1 + |f(z)|}{1 - |f(z)|}$$
.

THEOREM 4. For any function $f(z) \in B$ and for any p, 0 , the followingassertions are equivalent:

- $\begin{aligned} &\text{(i)} \qquad f(z) \in H_h^p; \\ &\text{(ii)} \qquad P(1,\lambda(f)^{(p-1)/2}\,f^h) < \infty; \end{aligned}$
- (iii) $\iint P(1, (\lambda(f)^{(p-1)/2} f^h)_w) du dv < \infty, \quad w = u + iv.$

Theorem 4 is proved in [1].

Let $f(e^{i\theta})$ be a summable function on the circumference $\Gamma: |z| = 1$. We denote by f(z), $z \in D$ the Poisson integral generated by $f(e^{i\theta})$. Let $\nabla f(z)$ denote the gradient of the function f(z).

THEOREM 5. For any summable function $f(e^{i\theta})$ on Γ the following assertions are equivalent:

- $f(e^{i\theta}) \in BMO;$ (i)
- $\sup_{w \in D} P(|\nabla f|_w, 1) < \infty;$
- $\sup_{\xi \in D} \iint P(|\nabla f(z)|_w, 1) |\varphi_{\xi}'(w)|^2 du dv < \infty, \quad w = u + iv.$ (iii)

THEOREM 6. For a holomorphic function f(z) in D the following assertions are equivalent:

- (i) $f(z) \in BMOA$;
- (ii) $\sup_{w \in D} P(|f'|_w, 1) < \infty;$

(iii)
$$\sup_{\xi \in D} \iint_{|w| < 1} P(|f'|_w, 1) |\varphi_{\xi'}(w)|^2 du dv < \infty, \quad w = u + iv;$$

(iv)
$$\iint_{|w|<1} P(|gf'|_w, 1) du dv \le c||g||^2, \quad w = u + iv, \text{ for any function } g(z) \text{ in}$$

$$\text{the Hardy class } H^2 \text{ with } ||g||^2 = \sup_{0 \le x \le 1} \int_0^{2\pi} |g(e^{i\theta})|^2 d\theta.$$

Theorem 5 and theorem 6 are proved in [4].

REFERENCES

- PAVIĆEVIĆ Ž., Characteristic properties of the Nevanlinna class N and the Hardy classes H^p and H^p_h, Ann. Acad. Sci. Fenn., Ser. AI Math., 15 (1990), 3-9
- [2] PAVIĆEVIĆ Ž., An integral criterion for bounded type functions, Mat. Vesnik, 3-4 (1988), 291-294 (Russian)
- [3] PAVIĆEVIĆ Ž., The Carleson measure and meromorphic function of uniformly bounded characteristic, Ann. Acad. Sci. Fenn., Ser. AI Math., 16 (1991) (to appear)
- [4] PAVIĆEVIĆ Ž., The Carleson measure, the Ahlfors-Shimizu characteristic and the classes BMO and BMOA, Dokladi AN SSSR, 317(2) (1991), 309-312 (Russian)
- [5] YAMASHITA S., The meromorphic Hardy class is the Nevanlinna class, J. Math. Annal. Appl., 80 (1980), 298-304
- [6] Yamashita S., Image area and functions of uniformly bounded characteristic, Comment.Math.Univ.St.Paul., 34 (1985), 37-44
- [7] YAMASHITA S., Function of uniformly bounded characteristic, Ann. Acad. Sci. Fenn., Ser. AI Math., 7 (1982), 349-367
- [8] YAMASHITA S., Criteria for functions to be of Hardy class H^p, Proc. Amer. Math. Soc., 75 (1979), 69-72
- [9] Yamashita S., Hyperbolic Hardy classes and hyperbolically Dirichlet finite functions, Hokkaido Math. J., 10 (1981), 709-722

Univerzitet u Podgorici Prirodno-matematički fakultet Cetinjski put b.b. 81 000 Podgorica Yugoslavia