FILOMAT-20, Niš, September 26-28, 1991

ON CERTAIN DIFFERENTIAL OPERATORS AND SOME CLASSES OF UNIVALENT FUNCTIONS

MILUTIN OBRADOVIĆ

ABSTRACT. Using the differential operator defined by $D^0 f(z) = f(z)$, $D^1 f(z) = z f'(z), \ldots, D^n f(z) = D(D^{n-1} f(z))$, we introduce new classes of univalent functions in the unit disc and consider some properties of them.

1. Introduction. Let A denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the unit disc $U = \{z : |z| < 1\}$. For $f \in A$ we define

(2)
$$D^{0}f(z) = f(z), \quad D^{1}f(z) = Df(z) = zf'(z), \dots, \dots D^{n}f(z) = D(D^{n-1}f(z)), \quad n \in N = \{1, 2, \dots\}.$$

We note that if f is defined by (1), then

$$D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k.$$

Using the operator D^n , Salagean [6] considered the classes $S_n(\alpha)$ of functions $f \in A$ satisfying

$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^nf(z)}\right\} > \alpha \quad (n \in N_0 = N \cup \{0\})$$

for some α $(0 \le \alpha < 1)$ and for all $z \in U$. Some other results on those classes were given in [4], too.

AMS MSC (1980): 30C45.

Supported by the Science Fund of Serbia, grant number 0401A, through Matematički institut.

Let O_n , $n \in N_0$, denote the class of functions $f \in A$ satisfying the condition

(3)
$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^nf(z)}\right\} < \frac{n+2}{n+1}, \qquad z \in U.$$

In the second part of this paper it is proved that $O_{n+1} \subset O_n$, $n \in \mathbb{N}_0$, and that O_n , $n \in \mathbb{N}$, is a subclass of the class univalent functions in the unit disc. Certain integral transformation and subclasses of univalent functions with negative coefficients will be considered.

Let f and g be analytic functions in U. We say that f is subordinate to g, written $f \prec g$, or $f(z) \prec g(z)$, if there exists a function ω analytic in U such that $\omega(0) = 0$, $|\omega(z)| < 1$, $z \in U$, and $f(z) = g(\omega(z))$.

2. Some properties of the classes O_n . In the beginning, we cite the following lemma whose more general form may be found in [2].

LEMMA 1 Let p be analytic in U and q be analytic and univalent in \overline{U} with p(0) = q(0). If p is not subordinate to q then there exist points $z_0 \in U$ and $\zeta_0 \in \partial U$, and $a \nmid k \geq 1$ for which $p(|z| < |z_0|) \subset q(U)$,

(i)
$$p(z_0) = q(\zeta_0)$$
, and

(ii)
$$z_0 p'(z_0) = k \zeta_0 q'(\zeta_0).$$

Also, we note that for q(z) = z in the previous lemma we get Jack's well-known lemma [1], which we will use in the proof of the next theorem.

THEOREM 1 Let $f \in O_{n+1} (n \in N_0)$. Then

(4)
$$\frac{D^{n+1}f(z)}{D^nf(z)} \prec \frac{1-z}{1-az},$$

where

(5)
$$a = \frac{3n+4}{3n+8}$$

PROOF. Let's put

(6)
$$\frac{D^{n+1}f(z)}{D^n f(z)} = \frac{1 - \omega(z)}{1 - a\omega(z)},$$

where a is defined by (5). Then $\omega(z)$ is analytic in U and $\omega(0) = 0$. From (6), after logarithmic differentiation and using the identity $z(D^m f(z))' = D^{m+1} f(z)$, $m \in N_0$, we get

$$\frac{D^{n+2}f(z)}{D^{n+1}f(z)}-\frac{D^{n+1}f(z)}{D^nf(z)}=-\frac{z\omega'(z)}{1-\omega(z)}+\frac{az\omega'(z)}{1-a\omega(z)},$$

or using (6) once again

(7)
$$\frac{D^{n+2}f(z)}{D^{n+1}f(z)} = \frac{1-\omega(z)}{1-a\omega(z)} - \frac{z\omega'(z)}{1-\omega(z)} + \frac{az\omega'(z)}{1-a\omega(z)}.$$

Let's prove that $|\omega(z)| < 1$, $z \in U$. If not, then by Lemma 1 (where p is equal ω and q(z) = z) there exists z_0 , $|z_0| < 1$, such that $|\omega(z_0)| = 1$, i.e. $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0) = ke^{i\theta}$, $k \ge 1$. For such z_0 , from (7) and since $1/2 \le a < 1$, we have

$$\operatorname{Re}\left\{\frac{D^{n+2}f(z_0)}{D^{n+1}f(z_0)}\right\} = \operatorname{Re}\left\{\frac{1 - e^{i\theta}}{1 - ae^{i\theta}} - \frac{ke^{i\theta}}{1 - e^{i\theta}} + \frac{ake^{i\theta}}{1 - ae^{i\theta}}\right\}$$

$$= \frac{1 + a}{2a} + \frac{2a - 1}{2a} \cdot \frac{1 - a^2}{1 - 2a\cos\theta + a^2}$$

$$+ (k - 1)\frac{1 - a^2}{2(1 - 2a\cos\theta + a^2)}$$

$$\geq \frac{1 + a}{2a} + \frac{2a - 1}{2a} \cdot \frac{1 - a^2}{(1 + a)^2}$$

$$= \frac{5 - a}{2(1 + a)}$$

$$= \frac{n + 3}{n + 2},$$

which is a contradiction to $f \in O_{n+1} \Leftrightarrow \operatorname{Re}\left\{\frac{D^{n+2}f(z)}{D^{n+1}f(z)}\right\} < \frac{n+3}{n+2}$ (by definition (3)). Therefore, $|\omega(z)| < 1$, $z \in U$, and by (6) we conclude that the relation (4) is valid.

From Theorem 1 we derive

Theorem 2. $O_{n+1} \subset O_n$ holds for every $n \in N_0$, and O_n , $n \in N$, are subclasses of the class of starlike functions in U.

PROOF. If $f \in O_{n+1}$, $n \in N_0$, then from Theorem 1 we have

$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} < \frac{2}{1+a} = \frac{3n+8}{3n+6} < \frac{n+2}{n+1}, \ z \in U,$$

which implies $f \in O_n$. From Theorem 1 we also have that if $f \in O_1$ then

$$\frac{D^1 f(z)}{D^0 f(z)} = \frac{z f'(z)}{f(z)} \prec \frac{1 - z}{1 - \frac{z}{2}},$$

i.e. f is starlike in U. Since O_1 is the subclass of starlike functions in U, and $O_{n+1} \subset O_n \subset O_1$ $(n=2,3,\ldots)$, then the same is valid for the classes O_n , $n \geq 2$. We note that the class O_1 is equivalent to the class of functions $f \in A$ satisfying the condition $\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\}<\frac{3}{2}, z\in U$. The class O_1 was considered earlier in [5],[9] and [8]. The method given here is similar as in [3].

THEOREM 3 Let $f \in O_n$, $n \in N_0$. Then the function

(8)
$$F(z) = \frac{n+1}{z^n} \int_0^z t^{n-1} f(t) dt$$

also belongs to O_n .

PROOF. From (8) after differentiation we get

$$nF(z) + zF'(z) = (n+1)f(z),$$

and from there, applying the operator D^n ,

$$nD^n F(z) + D^{n+1} F(z) = (n+1)D^n f(z).$$

From the last relation, after logarithmic differentiation, we obtain

(9)
$$\frac{nD^{n+1}F(z) + D^{n+2}F(z)}{nD^nF(z) + D^{n+1}F(z)} = \frac{D^{n+1}f(z)}{D^nf(z)}$$

If we put

(10)
$$p(z) = \frac{D^{n+1}F(z)}{D^nF(z)}, \quad q(z) = \frac{n+2}{n+1} - \frac{1}{n+1} \cdot \frac{1+z}{1-z},$$

and since $\frac{D^{n+1}f(z)}{D^nf(z)} \prec q(z)$ on supposition in Theorem, from (9) we easily obtain

(11)
$$p(z) + \frac{zp'(z)}{n + p(z)} \prec q(z).$$

We want to prove that (11) implies $p(z) \prec q(z)$. In our case the function q defined by (10) has a simple pole at z=1 on ∂U , but Lemma 1 is also true for such q (see [2], Lemma 1). If p is not subordinate to q, then by Lemma 1 there exists z_0 , $|z_0| < 1$, and ζ_0 , $|\zeta_0| = 1$ and $k \ge 1$ for which $p(|z| < |z_0|) \subset q(U)$ and the conditions (i) and (ii) of Lemma 1 are satisfied. If we put $\zeta_0 = e^{i\theta}$, then we have that the conditions (i) and (ii) give

$$p(z_0) = q(\zeta_0) = \frac{n+2}{n+1} - \frac{1}{n+1} i \cot \frac{\theta}{2},$$

and

$$z_0 p'(z_0) = \zeta_0 q'(\zeta_0) = \frac{1}{2(n+1)\sin^2\frac{\theta}{2}}$$

For the same z_0 we easily get

$$\operatorname{Re}\left\{p(z_0) + \frac{z_0 p'(z_0)}{n + p(z_0)}\right\} = \frac{n+2}{n+1} + \frac{1}{2\sin^2\frac{\theta}{2}} \cdot \frac{(n+1)^2 + 1}{\left|(n+1)^2 + 1 - i\cot\frac{\theta}{2}\right|^2} > \frac{n+2}{n+1},$$

which is a contradiction to (11). It follows that $p(z) \prec q(z)$, or $\operatorname{Re} \frac{D^{n+1}F(z)}{D^nF(z)} < \frac{n+2}{n+1}$, i.e. that $F \in O_n$, which was to be proved.

Finally, we may consider the class \overline{O}_n of analytic functions in U which have the form

(12)
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \qquad a_k \ge 0,$$

and satisfy the condition (3). Independently of the result of Theorem 2, we can show that \overline{O}_n , $n \in \mathbb{N}$, is a subclass of starlike functions in U. Namely, we have Theorem 4 Let $f \in \overline{O}_n$, $n \in \mathbb{N}$. Then

$$(13) \sum_{k=2}^{\infty} k^n a_k \le 1,$$

and f is starlike in U.

PROOF. Since $f \in \overline{O}_n$, $n \in \mathbb{N}$, then the condition (3) implies that the function $\frac{D^{n+1}f(z)}{D^nf(z)}$ is subordinate to the function q defined in (10), i.e. that

(14)
$$\frac{D^{n+1}f(z)}{D^nf(z)} = \frac{n+2}{n+1} - \frac{1}{n+1} \cdot \frac{1+\omega(z)}{1-\omega(z)},$$

where ω is analytic in U with $\omega(0) = 0$ and $|\omega(z)| < 1$, $z \in U$. From (14) we get

(15)
$$\omega(z) = \frac{D^{n+1}f(z) - D^n f(z)}{D^{n+1}f(z) - \frac{n+3}{n+1}D^n f(z)}.$$

Since $D^n f(z) = z - \sum_{k=2}^{\infty} k^n a_k z^k$ and $|\omega(z)| < 1, z \in U$, then from (15) we have

$$|\omega(z)| = \left| \frac{\sum_{k=2}^{\infty} (k-1)k^n a_k z^{k-1}}{\frac{2}{n+1} + \sum_{k=2}^{\infty} (k - \frac{n+3}{n+1})k^n a_k z^{k-1}} \right| < 1, \quad z \in U.$$

which gives

(16)
$$\operatorname{Re}\left\{\frac{\sum\limits_{k=2}^{\infty}(k-1)k^{n}a_{k}z^{k-1}}{\frac{2}{n+1}+\sum\limits_{k=2}^{\infty}(k-\frac{n+3}{n+1})k^{n}a_{k}z^{k-1}}\right\} < 1, \quad z \in U.$$

If we take z = r, $0 \le r < 1$, then from (16) we have

$$\sum_{k=2}^{\infty} k^n a_k r^{k-1} \le 1,$$

and letting $r \to 1$ we get the relation (13). Now, since

$$\sum_{k=2}^{\infty} k a_k \le \sum_{k=2}^{\infty} k^n a_k \le 1,$$

for $n \in \mathbb{N}$, then f is starlike in U (see [7]).

REFERENCES

- I.S.JACK, Functions starlike and convex of order α, J. London Math. Soc.,
 (2)3 (1971), 469-474.
- [2] S.S. MILLER, P.T.MOCANU, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
- [3] M.Obradović, Some criteria for univalence in the unit disc, J.Ramanijan Math. Soc., 5(1), (1990), 1-6
- [4] S.OWA, C.Y.SHEN, M.OBRADOVIĆ, Certain subclass of analytic functions, Tamkang J. Math., 20(2), (1989), 105-115.
- [5] S.Ozaki, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku, 4(1941), 45-86.
- [6] G.S.SALAGEAN, Subclasses of univalent functions, Lecture Notes in Math., 1013 (1983), 362-372, Springer-Verlag, Berlin, Heidelberg and New York.
- [7] H.SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
- [8] R.SINGH, S.SINGH, Some sufficient conditions for univalence and starlikeness Colloq. Math., 47(1982), 309-314.
- [9] T.UMEZAWA, Analytic functions convex in one direction, J. Math. Soc. Japan, 4 (1945), 194-202.

Department of Mathematics Faculty of Technology and Metallurgy 4 Karnegieva Street 11 000 Belgrade, Yugoslavia