AN EXTENSION OF THE SION'S MINIMAX THEOREM IVAN ARANDJELOVIĆ

Abstract. In this paper we extend the Sion's minimax theorem, omitting hypotheses of convexity for coordinate functions.

Let X and Y are non empty sets. A function $f: X \times Y \mapsto R$ has a saddle point $(x_0, y_0) \in X \times Y$ if:

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y) = f(x_0, y_0).$$

Theorems about existence of saddle points, so called minimax theorems, are especially important in games theory. Sion [3] has proved one of the most general theorem, of this type. Tasković [4] has got a new proof of Sion's theorem.

For a nonempty set X, function $g: X \mapsto R$ and real number $r \in R$ set

$$\underline{L}(g,r) = \{ x \in X : g(x) < r \} \quad \text{and} \quad \overline{L}(g,r) = \{ x \in X : g(x) > r \}.$$

If X is a topological space, then g is a lower (upper) semicontinuous if $\overline{L}(g,r)$ ($\underline{L}(g,r)$) is open set for each $r\in R$. If g is a lower (upper) semicontinuous function, than g has a minimum (maximum) on compact sets. If X is a convex subset of some topological vector space, then g is quasi-concave (quasi-convex) if $\overline{L}(g,r)$ ($\underline{L}(g,r)$) is a convex set for each $r\in R$.

Sion [3] has proved the following minimax theorem.

Theorem 1 Let $X \subseteq E$ and $Y \subseteq F$ are nonempty compact convex sets in topological vector spaces E and F. If $f: X \times Y \mapsto R$ is a real-valued function such that:

a) $y \mapsto f(x,y)$ is lower semicontinuous and quasi-convex on Y for each $x \in X$; b) $x \mapsto f(x,y)$ is upper semicontinuous and quasi-concave on X for each $y \in Y$, then f has a saddle point.

The aim of this note is to prove Theorem 1, without the assumption of convexity for coordinate functions. (See also Simons [2] and Tasković [4]).

Recall that Ky Fan [1] has proved the following coincidence theorem.

THEOREM 2 Let $X \subseteq E$ and $Y \subseteq F$ are two nonempty compact convex sets in topological vector spaces E and F. Let $A, B: X \mapsto 2^Y$ satisfy:

a) A(x) is open and B(x) is nonempty convex set for $x \in X$;

b) $B^{-1}(x)$ is open and $A^{-1}(y)$ is nonempty convex set for each $y \in Y$. Then $A(x_0) \cap B(x_0) \neq \emptyset$ for some $x_0 \in X$.

Now we prove our

Theorem 3 Let $X \subseteq E$ and $Y \subseteq F$ are nonempty compact convex sets in topological vector spaces E and F. If $f: X \times Y \mapsto R$ is a real-valued function such that

there is $T \subseteq R$ such that $a, b \in f(X \times Y)$, a < b implies $T \cap (a, b) \neq \emptyset$;

b) function $f_x(y) = f(x,y)$ is lower semicontinuous on Y, and $L(f_x,t)$ is convex for each $t \in T$, $x \in X$;

c) function $f_y(x) = f(x, y)$ is upper semicontinuous on X, and $L(f_y, t)$ is convex for each $t \in T$, $y \in Y$, then f has a saddle point.

PROOF. Since f is upper and lower semicontinuous, then $\min_{y \in Y} f(x, y) = p(x)$ and $q(y) = \max_{x \in X} f(x, y)$ exist for each $x \in X$ and $y \in Y$. Also, since p is upper semicontinuous on X and q is lower semicontinuous on Y, we know that $\max_{x \in X} p(x)$ and $\min_{y \in Y} q(y)$ exist.

Inequalities,

$$p(x) \le q(y)$$
 for each $x \in X$ and $y \in Y$,

implies

$$\max_{x \in X} p(x) \le \min_{y \in Y} q(y).$$

If

$$\max_{x \in X} p(x) < \min_{y \in Y} q(y)$$

then there is $t \in T$, such that

$$\max_{x \in X} p(x) < t < \min_{y \in Y} q(y).$$

We define mappings $A, B: X \mapsto 2^Y$ by

$$A(x) = \{ y : t < f(x, y) \} \text{ and } B(x) = \{ y : f(x, y) < t \}, x \in X.$$

Since f(x,y) is lower semicontinuous, we have that A(x) is open for each $x \in X$. Further, since $\max_{x \in X} p(x) < t$, it follows that B(x) is convex and nonempty for each $x \in X$.

 $A^{-1}(y) = \{x : t < f(x,y)\}$ and $B^{-1}(y) = \{x : f(x,y) < t\}$ implies that $A^{-1}(y)$ is nonempty and convex, and $B^{-1}(y)$ is open. By Theorem 2 there is $x \in X$ such that $A(x_0) \cap B(x_0) \neq \emptyset$. This is a contradiction with $f(x_0, a) < t < f(x_0, b)$, for each $a \in A(x_0)$ and $b \in B(x_0)$, and so the proof is complete.

REMARK. We see, that in Theorem 1, we have T = R.

REFERENCES

- [1] F. KY, Minimax theorems, Proc. Nat. Sci. USA, 39, (1953), 42-47.
- [2] SIMONS S., An upward-doward minimax theorem, Arch. Math., 54(3), (1990), 275-279.
- [3] SION M., On general minimax theorems, Pacific J. Math., 8, (1958), 171-178.
- [4] TASKOVIĆ M. R., Minimax theorems on posets with applications, Math. Japanica, 35(5), (1990), 805-815.

Omladinskih brigada 212/21 11 070 Novi Beograd Yugoslavia