Property $(Bb)$ and Tensor Product


M. H. M. Rashid, T. Prasad




In this paper, we find necessary and sufficient conditions for Banach Space operator to satisfy the property (Bb). Then we obtain, if Banach Space operators $A\in B(X)$ and $B\in B(Y)$ satisfy property (Bb) implies $A\otimes B$ satisfy property (Bb) if and only if the B-Weyl spectrum identity $\sigma_{BW}(A\otimes B)=\sigma_{BW}(A)\sigma(B)\cup\sigma_{BW}(B)\sigma(A)$ holds. Perturbations by Riesz operators are considered.