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Abstract. In this paper confidence Iintervals for the wode based on one

observation are constructed, It is proved that there exist distributions
for which the lenght of +the confidence Interval <¢an be made 1in some semnse
arbitrary close to a non-attainable one. The method for constructing

confidence intervals Is generalized to multidimensional distributlions.

1. Introduction

It is rather surprising that one can construct a confidence interval
for the mean p of a normal distribution 1\:’([..L,9"2 if there exists only one
observation X from N[p,c?) and nothing is known about the variance.e”. Even
more, there is a general method which allows to construct confidence
intervals based on a single observation for the mede of an arbitrary
unimodal distribution. A nice introduction can be found in [3]. Accerding
to the information given there, the main theorem was first proved in [1]
and later generalized in [4] and [2]. At the beginning of our paper we
introduce basic facts in a similar way as in [3). Then we calculate
confidence intervals for several frequently occurring families of
distributions. The lengths of the confidence intervals depend on a positive
constant k, which characterizes the given distribution or the whole class
of distributions. We prove that there exist distributions such that they
have an arbitrary small constant k. In some sense the Ilength of the
confidence interval appreoaches to a non-attainable lower limt in these
cases. Then we modify the method in such a way that it gives confidence
intervals for the mode of a multidimensicnal distribution when only one

cbservation is available,
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2. The Method

Throughout section 2-4 we assume that X is a continuous random

variable and t > 1 is a given number.

LEMMA 2.1. Let 6 be a given real number. Let F be the distribuiion

function of X - 8. Define

g 5 {F[—Gt/[t+1)] - F[-8t/(1-1)] for 620 ,
Fl-et/(t-1)] - Fl-6t/(t+1)] for 8<0 .
Then we have
P(X-t|X| = 8 = X+t|X]) = 1-q .

Proof. If 8=0 then the assertion obviously holds. Let 620. Then
P(X-tIX| = 6 = X+t|X]) = P(IX-0] = tIX]) = P(|11 - 3 | = t) =

= P(1-t = ; =1+t)

Define
= 1+t}

Then q is the probabiiity that A does not occur. But a simple calculation
gives that A deoes not occur if and only if X belongs to the interval with
the end-point 8/(1-t) and 8/(1+t), i.e. if X-6 belongs to the interval with
the end-points -ot/(t-1) and -6t/(t+1). If @ > 0, then -0t/ /(t+1)>-8t/(t-1),
and if 9 < 0, then -8t/(t-1)>-8t/(t+1). m

THEOREM 2.2. Let X have a unimodal distribution with the mode 6. Then
we have for arbitrary real a

P(X-tiX-al =0 = XrtlX-al) = 1 - Lo .

Proof. let a = 0. Let F and f be the distribution function =and the
density of X-8, respectively. Since f is non-increasing on [0,w), we have

for 0 =8 <gs
1 2

S, 5,
(52_51)_1J fls)ds = 5;1J f(s)ds .
s 0
1
Thus
s,7S, 5,75,
F{SE)_F(Sl) = s, [F(SZ)—F(O)] =3 2*
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Similarly we have for 5, < 51 =0

S -8 s -5

2 ! [F(0)-F(s )] = 21
5 2 s
2 2

F(Sl)_F(S2) =

Using these inequalities we get for @ > 0

F[-8t/(t+1)] - Fl-8t/(t-1)]1 = 2/(t+1),
and for 8 < O

Fl-8t/(t-1)1 - Fl-0t/(t+1)] = 2/(t+1)
The same inequality also holds for 8 = 0. Thus we proved

.-

P(X-t|X] =98 = ¥+tj|¥X|) = 1 - o1

Now, we take X - a and 8 - a instead of ¥ and o, respectively.

2 ; =
1 - el P(X-a~-t|X~a| = 9-a = X-a+t|X-a|) =

= P(¥-t|X-a| = 0 = X+t |X-a]).

The proof is finished. =®

This yields

Theorem 2.2 says that for arbitrary a chosen before knowing X

(-t |X-a|, X+t|X-al)

is a confidence interval fer 8 on a level at least 1 - 2/(t+1). The choice

of a can reflect our prior knowledge about the distribution of the random

variable X.

THEOREM 2.3. Let X have a unimodal distribution that

about its mode 6. Then for arbitrary fixed a

P(X-t|X-a] = 8 = X+t|¥-a|) = 1 - E%T

Procf. The proof is quite similar to that of Theorem 2.2,

has a symmetric distribution about 0, we have

1 -
F(sz)-F(D] s 5 for s, > 0
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and

for s < 0. m

F(O]ﬂF[sz) = -

o =

THEOREM 2.4. Let X have a unimodal distribution that is symmetric
about its mode 6. Let f be the density of X-8. The4n we have for arbitrary

fixed a

2
P(X-t|X-a| = & = X+t|¥X-al|) = 1 - = Egg[cf(c)].

Proof. It sufficies to consider the case a = 0. W2 use Lemma 1. First
we show that
g =F[lelt/(t-1)] - Fl[|lele/(t+1)].

This obviously holds if 8 < 0. For & = 0 we use the relation F(x) = 1-F(-x)

since the distribution of X - 8 is symmetric about 0. Thus
q = sug{ Fle(t+1)/(t-1)] - F(ec) } =
c>

c(t+1)/(t-1)

= ggg[ j f(>x)dx ] = EEB[ [c %;% - c]f(c) ] 2

<

_ 2
= & EEB[Cf(C)l

3. Special cases

In this section we apply Theorem 2.4 to some frequently used classes
of distributions. The result presented in Theorem 3.1 is known (see [3]).

We introduce it for sake of completness.

THEOREM 3.1. Let X have a normal distribution with EX=68. Then we have

for arbitrary fixed a

—

1 2 0. 484
t-1 vV we t-1 -

P(X-t|X-a|l =8 = X+t|X-a]|) = 1

Proof. If VarX = 02, then

ggg[cf(c)] = Egg[
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The assertion follows from Theorem 2.4. m

THEOREM 3.2. Let X have a logistic distribution with the distribution
function

b(e-x}]

G(x) = 1/[1+e b > 0.

Then we have for arbitrary fixed a

0.448

P(X-t|X-a| = 8 = X+t|¥-al) = 1 - =

Proof. The logistic distribution with the distribution function G is
unimodal with the mode 8. The variable X-8 has the distribution function F
and the density f, where

F(x) = 1/(1+e™™), £(x) = be P%/(1+e7P%)2

We get

suplef(c)] = supl ue Y/ (1+e™™)? .

u

The function hiu)=ue */(1+e™")% for uz0 reaches its maximum in the point

u, that is the root of the equation

1 -u+ (1+we™ =0,

Numerical solution is u, = 1.543 405 and thus h(uo] = 0.223 872. Now, we

use again Theorem 2.4. m
THEOREM 3.3. Let X have a lLaplace distribution with the density

1 _Ix-8]
glx) = S exp{ e } , b>o0.

Then we have for arbitrary fixed a

1 0.368
P[X‘th-ﬁ' =8 = X+t|X—a|] =z 1 = 7{1;"1)8 =1 - %=1 =
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Proof. In this case X - 0 has the density

f(x) = (2b)*1 E-iXI/b.

We get

DY
o

THEOREM 3.4. Let X have a Cauchy distribution with the density

1
glx) == — , b > 0.
i b2+(x-8)2
Then we have for arbitrary fixed a
s 1 _ 4 _ 0.318
P(X-t|X-a| =@ = ¥+t|¥-al) = 1 - oy = 1 - =1 -

Proof. The density f(x} of X - 8 is (%) = 7 'b/(b%+x7). Then

1 be ]=1

syplor(e)] = gup| ERcH -

4, Distributions minimizing a coefficient

For unimedal symmetric distribution we derived in Theorem 2.4 that

(X-t|¥X=a|, ¥+t|X-ai) is a confidence interval for the mode 6 on a

confidence level at least 1-(t-1)"'k , where
k = Esug[cf(c)L
c>

where f is the density of X - 8. If we want to ensure a confidence level at

least 1 - o, we must choose t = 1 + ; . The lengh of such a confidence

2[ g L 1(—-]I}(-al.
o

interval is

We derive that k=0.484, 0.448, 0.368 and 0.318 for normal, logistic,
Laplace and Cauchy distributions, respectively. From the definition it Is
clear that k>0, There is a question if for some distributions the constant
k can be arbitrary small. The results of section 3 indicate that k Iis
smalier for heavy-tailed distributions. This hint allows to prove that the

answer to the guestion iz affirmative.
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THEOREM 4.1. There exists a sequence of symmetric (about zero)
unimodal densities f such that the corresponding constants
n
k = 25u8[cf(cJ]
n <>
converge {o 0 as n » w,

Proof. Let n = 2, Define

1/[ (3x+n) 1n(x+n)] for 0= x=n" -n
fn(x) =

and

f (x) =f (-x) for x <0 .
n n

It is clear that f 1is unimodal with the mode 0. Using the formula
n

dx _
) InGany - inlinlxn)]

one can check that f 1is a density. But in our case
n

- _ o3 & 1 — 2
k= BEQB[CE(C)] B 2?35[ {c+n) 1n(c+nT'] - 2?98[ In(c+n) ] In n

and thus kn > 0. &

The example given in the proof of Theorem 4.1 can be medified in such
a way that we get densities which are continuous and decreasing on [0,«},

but we omit details here.

5. Multidimensional distributions

The general approach can be modified also to multidimensional
distributions. Our method is based on the Bonferroni inequality, which is

frequently used in similar situations.

THEOREM 5.1. Let a random vector X = (XI....,XH)' have a continuous
distribution such that the marginal density pi(x) is unimodal with a mode
Bi. (i =1,...,n). Then for arbitrary fixed a5, ...8 and for every t1 > 1,

..t > 1 we have
n

93




n
- ~ . _ 2
P(X-t IX-al =6 <X+ |X-a| for i=1,...,0) =1 z

Proof. Define the events

R
1=1
If pl[xJ is symmetiric about its mode B1 for i = 1,...,n, then
L
P(X~t,IX-a | =8 =X+ |X-al for i=t,...,n)=1-}) - =
=1 4
If the vector X = (Xi.....Xn)' has a regular multidimensional normal
distribution with EX=(61,...,9nJ', then
|
P(X-t |[X-a | =8 =X+t |[X-a| for i=1,...,n) =
£ 1 R S U
2 n 1 \
=1 = L & |
1=1 1 ‘

Al = {xi_tilxi-ail =0, = X1+t1|X1_a1|}

for i =1,...,n . Let A:: be the complement of A . Then

P[ iAi ] =1 - F‘[ 1U:;e\f ]

But P(Af) s 2/(t +1) for unimodal p,_ (see Theorem 2.2), P(A’f) s 1/(t +1)

w

1-3 P(Af).
1=1

for unimedal p that is symmetric about its mode Gl (see Theorem 2.3} and
P(A]) = (2/me)'?

Theorem 3.1). This concludes the proof. m

/(t:—l) if P, is a density of a normal distribution (see

For example, if we want to construct a confidence interval for the

mean (61.....6 )’ of an n-dimensional normal distribution on the confidence
n
level at least 1-« , it suffices to find t1""'t such that
n
2 &1
Ezt—1"°‘
1=1 i
If we decide to take t1 = ... =t =1t, then we get
n

g o id B FE
[24 mne

Similar calculations can be also made in other cases.

If a random vector X = (X1""’XEJ. has a normal distribution with EX
= [B],...,B }J’, then this n-dimensional distribution is unimodal with the
n
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mode (91,...,9n]' and, in the same time, the marginal distribution of Xl is
unimodal with the mode Bl’ i=1,...,n . It must be stressed, however, that
in general case the components of an n-dimensional mode may not be modes of
the corresponding marginal one-dimensional distributions.We can demonstrate

it on the following example.

Let Q be the square with the vertices (0,0), ( b , - 1—), (v2,0)
) vz
and ( —l—, —i). Let plx ,x ) = 1 for (% ,%x) € Q and p(x ,x ) = 0 otherwise.
vz Ve 1772 1" "2 1" 72

Then (0,0) is a mode of this two-dimensicnal density, but the marginal
distribution pl(x] has the mode 1/¥2. If this example is not convincing
enough, it can be modified in the following way. Let h(xl,xz] be the two-
dimensional normal density with vanishing expectation and the unit variance

matrix. Consider the density
* -
P (Xl,le =& hix,x) + (1-e) p{xl,sz
#*
where 0< £ <1. Then p 1is unimodal with the mode (0,0) and for 0 = g <

2/[2+(2He]_1] 0.832 the one- dlnen31onal marginal density p has still the
mode 1/V2. Really, the mode of p must be between 0 and I/V_ Since

2
#* = K
p(x) = (20072 ™ ® 4 2 (1-¢) x , for O=x=1/v2
the derivative is
X 2 -1/2 _-x /2
P, (%) = - & x (2n) e + 2 (1-¢).
2
We know already that xe™ "% = ¢™% and thus
¥ -1/2
p, "(x) =z - g (2ne) + 2 (1-8).

1

The right-hand side is positive if & < 2/[2+(2me) 2],
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Ji¥i Anddl
INTERVALI POVERENJA ZA MOD DOBIJENI NA OSNOVU JEDNE OPSERVACIJE

U radu se konstruiZu intervali poverenja za mod na osnovu samo Jjedne
opservacije. Dokazuje se da postoje raspodele za koje se duZina intervala
poverenja u nekom smislu moZe uéiniti proizvol jno bliskom nedotiZivoj. Me-
tod za konstrukeiju pomenutih intervala poverenja se uopstava i za sludaj
visedimenzionih raspodela.
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