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Abstract. Linear predictions of well known  EAR(2) and  NEAR(Z2) time

serles by method of Yaglom is presented.

Exponentialy distributed autoregressive time series of order two are
treated here. Exactly, EAR(2) [1] and NEAR(Z) [2] time series are treated.
Known observations of the realization of these nenlinear models of time
series generates linear Hilbert space by usual definitions of metric and
norm. The possibility of predicting stationary time series uniquely by
method of Yaglom [31, in such defined Hilbert space, includes the
assumption that the spectral density f(r) of the time series is a rational
function by e'T. Preciously, conditions

a) gs(z) is analytic function of complex variable z outside the unit
circle and on it ( on the circle |z|=1 ) - it may have singularities only

inside the unit circle,
b) gs(m)=0,

e) [z5-g (z)]f](z) is analytic function inside the circle |z|=1 and
5

on it, where f(T)=fl(e1T);

are sufficient to define function g (z) uniquely when fi(zl is rational.
s

g (z) will then be the spectral characteristic of the extrapolation.

Let us look at the definiticns of the models EAR(2) and NEAR(Z):

EAR(2)
o X +8 w.p. l-u
(1) % = 17t-1 & 2

= [ «X _+8 W.p. «
2t-2 ot 2
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{at, t=0,*1,%2,...} is the sequence of independent identicaly distributed

random variables:
-1
0 W. D. nti(1+cx1 ecz]
-1
(2) 8 ={ E W. p. [10&1](1%1[1 {1+-:i: %)g]

‘ 2 -1
L (lmi—aa]szt W. D. (1—&2)[0t1—0c2) {E1+al—oc2]{1—[1+ai1voc2)oc2]}

where {Et, t=0,%1,%2,...} 1is the sequence of independent identicaly

exponentialy distributed with parameter p, p>0, random variables,

NEAR(Z2)

= < < <1
(3) Xt {l Baxt—z 1;;6 WP 2 « » 0 a1"12’01: +% ! ¥ D<1B ’23
L 8 w.p. l-a-u
£=0,+1,%2, ...,
{6t, t=0,%1,%2,...} is the sequence of independent identicaly distributed

random variables:

j’Et WP 1°p, "B,
(4) 6t = b:aEt W. P B

L
bBEt W.Dp. P

p=lla B +a B )b -(a +a )8 B,1/[(b,-b)(1-b )]

p3 cc+ot )BB (th+-:xB b}/ (b bsl(l—baﬂ
0<b = {(1-~a )R +(1-a IR ~[ ((1-0 )B.+(1-a )B ) -4(1-0 -c JB.B. 1%} /2 <
3 1: 1 2 2 b 1 2 2 i 2 1 2
< b = {(1-0 B +(1-a )8 +[((1-a )8 +(1-a )B ) ~4(1-a -« )B B, 142 <
2 1 1 2 2 1 1 & 2 ki

We can recognize that their autocorrelations satisfy the difference

equation of order two
(3) pr=Apr‘1+Bpr_ v el cs

with the conditions

() pozl PP,
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The spectral densities of these two time series have the form

(7)  flx)=C(2mu®)

-1, AT gy 1T
le - | |e

where wl and W, are the solutions of the equation
(8) w-Aw-B=0
and C is a real constant greater than zero.
Let’s proove this statement.
If we use the above notations, the solution of difference equation

(5) is given by the equation

|

|

(A-w_ )[Aw_+B(1-B)] (A-w )l Aw_+B(1-B)] |

1 2 T 2 1 ‘

(8} p= W= W,

T (1—B]wz(w2fw1} = {1—B}wf(w2—w1]

if D=A+4B is greater than zero and under the assumption that w2>w1. The

last assumption can be adopted without any loss of generality.

(10) w +w=A and WwwW=-B |,
iR 12

it will be according to (9)

1-w° . 1-w° .
(11) P =4’;__w12“" _—Z__WW;*
r ; 14 s
(1 w1wz}(w2 W1] dwlwz)(wa wll
So, if
(12} K =Cov(X ,X ) , r>0
r t t4r
and as Kr=1<_P , wWe have
Y (1—wf] inl w1(1_w2) Inl
(13) Kh=p_2 —aﬁ*wzh e SR , h=0,%1,%2, ...

(1+w1w2](w2—w1) (1+w1w2](waéw1]

Now the spectral density of Lhose two time series has the form i
o 1 Th
(2m) " E Ke =

h=-m

1l

As
(14) flz) U ‘
2 2
I (1—w1)(1—w2)(1—w1w2]

{(2mu”) ]e

iT -2 AT -2 |

—-wlf |e -, . ‘

AW ‘
70
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The proof will be completed if we proove that C and D are greater than
zerc This must be treated separately for each of those two time series.

For EAR(2) we have that

(15) A=(1—n;2hx1 , B=a

n M

and

2 2 2
(18) D—(l—az) a1+4a2

Obvicusly Dz0. D will be equal to zero if and only if m1=m2=0, but
according to the definition of the model EAR(Z), 0<a1,m2<1, that is, D>0.

According to (10), W, and W, are such that one is greater and the
other is less than zero and positive one has greater absolute value than
negative one. As we have adoplted that w2>w1, we can see that Iw2|>|w1| and

their explicit forms are
(17) w1=[A_—(A2+4B)U2]/2 , WE:[A+(A2+4B)V2]/2

and it is easy to see that |w2l<l. All this implies that C>0.
For NEAR(2) we have that

(18) A=a181 and B=a B
and

_ 2.2
(19) D = “1B1+4a232 >0

for all avaluable values of o, o
NEAR(Z2).

To proove that C>0, we must verify that Iw1|<|w2\<1. The first

- 81’ 82 according to the definition of

inequality is trivial because of the same arguments as those in EAR(Z)
case. The second inequality is to be prooved with respect to 51 and Bz’ id
est,

(1) stﬁl<l gives 0531—82<1—62 and ai61+a232<1-m2(1v32)<1 )
(i1) 31552<1 gives DSBZ-Bl<1-Bl and m181+a232<1—a1(1—61]<1

These relations imply that w2<1
In the case of NEAR(2)

(20) w1=[ocj{31—(cx?f3f+4a282}1/2]/2 . w2:[a1;31+(af3f+4a2r32)“21/2

84




Now we can set the theorem:

THEOREM. The best linear prediction for the value Xf+s (s is a

nonnegative Integer) from time series EAR(Z) or NEAR(Z2) in Hilbert space

Ht 1()‘I) = Clsp{Xt 1,Xt 2,...} of known observations on the realizaltion of
the time series is
s+2 5+2 =+1 s+1]
By ¥ =2 Loy = LAl Eo B s B
te+s t-1 -2
W_o=W W_o=W
z 1 2 1
S42 a+2 s+1 s+1
W W -w W (W W )
-1 2 12 2 1
+iL I~
V=W
2 1

Proof. Let us define time series {Yt, t=0,%1,%2,...} in the following

way
= =1
(22) Y =X -

f‘br all t. Then we can assume that we have Uthe observations {Yt .

Ytlz,...} from the realization of the time series {Yf}. This translation

does not change the correlation structure and, accoerding to that, the

gpectral density of the process. Bo,

o)
Cz
(z—wi) ( 1_w17'] (z—wz) M—waz]

(23) f1(2)=

and, with respect to a2), b) and c), unique spectral characteristic of the

proces {Yt} is

S+2

_ a1
(z4) gs(z] = (w2 wl) [(w2

s+2 =1 s+l s+l =2
wo Jz —wow (w - )z 7l
1 12 g 1

id est,

s+l s+1

s+2 s+2, -i
W, e =

1Ty _ T e -217T
(25) gs(e ) = (w2 wll [(vJ2 A ]

Je

T
-w W (W
12

and the best linear predictien in Hilbert space Ht_l(YJ of the time series

{Yt} for s=0 periods ahead is
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and the result follows.
The error of such prediction will be the orthogonal distance between
X, and H_(X), E(|% X |9
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2. The Method

Throughout section 2-4 we assume that X is =a continuous random

variable and t > 1 is a given number.

LEMMA 2.1. Let ® be a given real number. Let F be the distribution

function of ¥ - 8. Define

g = {F[-Bt/(t+1)] - Fl-8t/(t-1)] for 620 ,
Fl-et/(t-1)] - Fl-et/(t+1)]] for 8<0 .
Then we have
P(X¥-t|X|] = 8 = X+t[X]) = 1-q .

Proof. If 8=0 then the assertion obviously holds. Let 620. Then

P(X-t|X] = 8 = ¥+t |X]|) = P([X-0] = t[X]|) = P(i1 ~ % | =t) =

= P(1-t = %sht)
Define

= 1+t}

Then g is the probabiiity that A does not occur. But a simple calculation
gives that A does not occur if and only if X belongs to the interval with
the end-point 8/(1-t) and 8/{1+t), i.e. if ¥X-8 belongs to the interval with
the end-points -ot/(t-1) and -et/(t+1). 1f & > 0, then -8t/(t+1)>-6t/(t-1),
and if 8 < 0, then -8t /(t-1)>-ot/(t+1l). =

THEOREM 2.2. Let X have a unimodal distribution with the mode 6. Then
we have for arbitrary real a
2
P(X-t|X-al = 6 = X+t[X-al) = 1 =T
Proof. let a = 0. Let F and f be the distribution function =nd the
density of ¥-8, respectively. Since f is non-increasing on [0,»), we have

for 0 = s <s
1 2

5 s,
-1 o1
(s,s,) ff(s)ds = sgjf(s)ds :

s 0

1
Thus

5,75, 5,78,

F(Sa)_F(S1) = . [F(SE)—F(O)] = ;
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