Milutin Obradović A NOTE ON STARLIKENESS OF CERTAIN INTEGRALS* (Recerved 1.12.1990.)

Abstract. We consider the starlikeness of integral transform $F(z) = \frac{\alpha+1}{\alpha} \int\limits_{z}^{z} t^{\alpha-1} f(t) dt$, where \underline{f} is analytic in |z| < 1, f(0) = 0, and Re(f'(z)) > 0.

1. Introduction and Preliminaries

Let A denote the class of function of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the unit disc $U = \{z : |z| < 1\}$.

By R we denote the class of functions $f \in A$ for which $\operatorname{Re}\{f'(z)\} > 0$, $z \in U$, and by S the class of starlike functions in U, i.e. the class of functions $f \in A$ such that $\operatorname{Re}\{zf'(z)/f(z)\} > 0$, $z \in U$. It is well-known that the classes R and S are the subclasses of univalent functions in U.

Let \underline{f} and \underline{g} be analytic in the unit disc U. The function \underline{f} is subordinate to \underline{g} , written $\underline{f} << \underline{g}$ or $\underline{f}(z) << \underline{g}(z)$, if \underline{g} is univalent, $\underline{f}(0) = \underline{g}(0)$ and $\underline{f}(U) \subset \underline{g}(U)$.

In their paper [4], R. Singh and S. Singh have proved that if f \in R, then F \in S , where

$$F(z) = \int_{0}^{z} \frac{f(t)}{t} dt.$$

Later, Mocanu [3] has proved that the same is true for the transform

$$F(z) = \frac{2}{z} \int_{0}^{z} f(z)dt.$$

AMS Subject Classification (1991): 30A32

^{*)} Communicated on International Symposium on Complex Analysis and Appl., Herceg Novi, Yugoslavia, May 23-28, 1988.

In this note we show that the same result holds if F is defined by

$$F(z) = \frac{5/2}{z^{3/2}} \int_{0}^{z} t^{1/2} f(t) dt.$$

We note that we use a different approach as that one given in [3]. In that sense, we need the following lemmas.

Lemma 1. [2]. Let \underline{q} be univalent in \underline{U} and let θ and ϕ be analytic in a domain \underline{D} containing q(U), with $\phi(w) \neq 0$ when $w \in q(U)$. Set

$$Q(z) = zq'(z)\phi(q(z)), h(z) = \theta(q(z)) + Q(z)$$

and suppose that

(i) Q is starlike in \underline{U} (univalent, but the condition Q'(0) = 1 is not necessary);

$$(ii) \ \operatorname{Re} \{ \ \frac{\operatorname{zh}'(z)}{Q(z)} \ \} \ = \ \operatorname{Re} \{ \ \frac{\theta'(q(z))}{\phi(q(z))} + \frac{\operatorname{zQ}'(z)}{Q(z)} \ \} \ > 0, \quad z \in U.$$

If p is analytic in \underline{U} , with p(0) = q(0), $p(U) \in D$ and

(1)
$$\theta(p(z)) + zp'(z)\phi(p(z)) \ll \theta(q(z)) + zq'(z)\phi(q(z)) = h(z)$$
, then $p \ll q$, and q is the best dominant of (1). m

We note that the univalent function q is said to be a dominant of (1) if $p \ll q$ for all p satisfying (1). If \tilde{q} is a dominant of (1) and $\tilde{q} \ll q$ for all dominants q of (1), then \tilde{q} is said to be the best dominant of (1).

More facts about the method of differential subordination may be found in [2].

By using Lemma 1 we derive

Lemma 2. If \underline{P} is analytic in \underline{U} with P(0) = 1 and if

(2)
$$Re\{zP'(z) + (\alpha+1)P(z)\} > 0, z \in U,$$

for some α , $\alpha \geq 0$, then

(3)
$$|\arg P(z)| < \gamma \frac{\pi}{2}, \quad z \in U,$$

where $0 < \gamma < 1$ is the root of the equation

(4)
$$\gamma + \frac{2}{\pi} \arctan \frac{\gamma}{\alpha + 1} = 1.$$

Proof. Let show that the following implication

(5)
$$zP'(z) + (\alpha+1)P(z) << (\alpha+1) \frac{1+z}{1-z} \Rightarrow P(z) << (\frac{1+z}{1-z})^{\gamma},$$

where $\alpha \ge 0$ and γ satisfies the equation (4), is true.

In Lemma 1 we choose
$$\theta(w) = (\alpha+1)w$$
, $\phi(w) = 1$ and $q(z) = (\frac{1+z}{1-z})^{\gamma}$. Then
$$Q(z) = zq'(z)\phi(q(z)) = zq'(z) = \gamma (\frac{1+z}{1-z})^{\gamma-1} \frac{2z}{(1-z)^2}$$

is starlike because \underline{q} is a cinvex function in \underline{U} . The condition (ii) in Lemma 1 is also satisfied, and by applying (1) we have that if \underline{p} is analytic in \underline{U} with $\underline{p}(0) = \underline{q}(0) = 1$ and

(6)
$$(\alpha+1)p(z) + zp'(z) << (\alpha+1) \left(\frac{1+z}{1-z}\right)^{\gamma} + \left(\frac{1+z}{1-z}\right)^{\gamma-1} \frac{2z}{(1-z)^2} = h(z)$$

then p << q and <u>q</u> is the best dominant of (6). Now let us show that

(7)
$$(\alpha+1) \frac{1+z}{1-z} << h(z),$$

where h is defined in (6). Really, we have

$$h(z) = (\frac{1+z}{1-z})^{\gamma} [(\alpha+1) + \frac{2\gamma z}{1-z^2}] = q(z)h_1(z)$$

where we put

$$h_1(z) = \alpha + 1 + \frac{2\gamma z}{1-z^2}$$
.

The function <u>q</u> maps the unit disc <u>U</u> onto the angle |arg w| < $\gamma \frac{\pi}{2}$; the function h₁ maps <u>U</u> onto the complex plane minus the half-lines Re{w} = $\alpha+1$, Im{w} $\geq \gamma$ and Re{w} = $\alpha+1$, Im{w} $\leq -\gamma$.

From where we easily obtain

$$|\arg h(e^{i\varphi})| \ge \gamma \frac{\pi}{2} + \arctan \frac{\gamma}{\alpha+1} = \frac{\pi}{2} \qquad (0 \le \varphi \le 2\pi)$$

which gives with $h(0) = \alpha+1$ that (7) is true. From (2) and (5) we get the statement of Lemma 2.

Lemma 3. If \underline{P} is analytic in \underline{U} , with P(0) = 1 and

(8)
$$\left| arg \left[zP'(z) + P(z) \right] \right| < \gamma \frac{\pi}{2}, \quad z \in U,$$

for some γ , $0 < \gamma \le 1$, then

(9)
$$|arg P(z)| < \gamma_1 \frac{\pi}{2}$$
,

where $0 < \gamma_1 < 1$ is the root of the equation

(10)
$$\gamma_1 + \frac{2}{\pi} \arctan \gamma_1 = \gamma. \quad \blacksquare$$

The proof of this lemma is similar to the proof of Lemma 2.

Lemma 4. Let P be a complex function such that

(11)
$$|arg P(z)| \le arctg \frac{\sqrt{3}}{\alpha}, \quad z \in U,$$

for some $\alpha \geq 0$.

If p is analytic in \underline{U} , with p(0) = 1 and if

$$Re\{P(z)[zp'(z) + p^2(z) + \alpha p(z)]\} > 0, z \in U,$$

then Re(p(z)) > 0, $z \in U$.

The proof is the same as in [3] for $\alpha = 1$.

2. Main result

THEOREM. Let $f \in R$ and let

(12)
$$F(z) = \frac{5/2}{z^{3/2}} \int_{0}^{z} t^{1/2} f(t) dt.$$

Then $F \in S^*$,

Proof. From (12) we obtain

$$zF'(z) + \frac{3}{2}F(z) = \frac{5}{2}f(z)$$

and

(13)
$$zF''(z) + \frac{5}{2}F'(z) = \frac{5}{2}f'(z).$$

Since $f \in R$, by applying Lemma 2 we get

(14)
$$\left|\arg F'(z)\right| < \gamma \frac{\pi}{2}, \quad z \in U,$$

where γ is the root of the equation

(15)
$$\gamma + \frac{2}{\pi} \arctan \frac{\gamma}{2.5} = 1, \qquad \gamma = 0.802...$$

Further, let p(z) = $\frac{zF'(z)}{F(z)}$ and P(z) = $\frac{F(z)}{z}$.

Since

$$zP'(z) + P(z) = F'(z),$$

from Lemma 3 and (14) we have that

$$|arg P(z)| < \gamma_1 \frac{\pi}{2}$$
,

where $\gamma_1 < 0.505...$ is the root of the equation (10) for γ given in (15). Also, from (13) and since $\operatorname{Re}\{f'(z)\} > 0$, $z \in U$, we have

$$Re\{P(z)[zp'(z) + p^2(z) + \frac{3}{2}p(z)]\} > 0, z \in U.$$

Finally, because $|\arg P(z)| < \gamma_1 \frac{\pi}{2} < 0.793 \dots < \arctan \frac{\sqrt{3}}{3/2} = 0.857 \dots$ and from Lemma 4, we deduce that $\operatorname{Re}\{p(z)\} > 0$, $z \in U$, i.e. $F \in S$.

REMARKS. For $\beta \ge 0$, we denote by $R(\beta)$ the following set

$$R(\beta) = \{f \in A : Re\{f'(z) + \beta z f''(z)\} > 0, z \in U\}.$$

By Lemma 2 we get $R(\beta) \subset R$. Also, we have that $R(\beta_1) \subset R(\beta_2)$ for $\beta_1 > \beta_2 \ge 0$. J. Krzyz [1] has shown that $R(0) = R \subset S$. The result of our theorem is equivalent to $R(2/5) \subset S$. Hence $R(\beta) \subset S$, for all $\beta \ge 2/5$, it means that this results improves the earlier results of R.Singh and S.Singh [4] and Mocanu [3]. In other words we have shown that integral transformation

$$F(z) = \frac{\alpha+1}{\alpha} \int_{0}^{z} t^{\alpha-1} f(t) dt$$

maps R into S * for $0 \le \alpha \le \frac{3}{2}$.

The problem to find such a maximal α or an equivalent to find $\inf\{\beta: R(\beta) \in S^*\}$ remains still open.

REFERENCES

- J. KRZYZ, A counterexample concerning univalent functions, Folia Societaties Scientarium Lubliniensis, Mat. Fiz. Chem., 2(1962), 57-58.
- [2] S.S. MILLER & P.T. MOCANU, On some classes of first-order differential subordinations, Michigan Math. J. 32(1985), 185-195.
- [3] P.T. MOCANU, On starlikeness of Libera transform, Mathematica 28(51), (1986), 153-155.
- [4] R. SINGH & S. SINGH, Starlikeness and convexity of certain integrals, Ann. Univ. Mariae Curie-Sklodowska, Lublin, XXXV, 16, Sec. A (1981), 145-148.

M. Obradović

BELEŠKA O ZVEZDOLIKOSTI IZVESNIH INTEGRALA

U radu je proučena zvezdolikost integralne transformacije $F(z)=\frac{\alpha+1}{z}\int\limits_{0}^{z}t^{\alpha-1}f(t)dt$, gde je f analitička funkcija u |z|<1 koja zadovoljava uslove f(0)=0 i $\text{Re}\{f'(z)\}>0$.

Department of Mathematics Faculty of Technology and Metallurgy 4 Karnegieva Street 11000 Belgrade, Yugoslavia