Milutin Obradović, Seiichi Fukui, Tadayuki Sekine ON α-CONVEXITY AND STARLIKENESS

(Received 01.12.1990.)

Abstract. In this paper we give a condition for α -convex function under which we have that $\left|\arg(zf'(z)/f(z))\right|<\gamma\pi/2$ (0< $\gamma\le1$).

1. Introduction and preliminaries

First, we cite the following well-known definitions [4].

For a function f(z) analytic in the unit disc $U = \{z : |z| < 1\}$, .with $f'(0) \neq 0$ and f(0) = 0, we say that it is starlike if and only if $Re\{zf'(z)/f(z)\} > 0$, $z \in U$.

For a function f(z) analytic in U, with $f'(z) \neq 0$ we say that it is convex if and only if $Re\{1+zf''(z)/f'(z)\} > 0$, $z \in U$.

Let A denote the class of functions f(z) analytic in U with f(0) = f'(0) - 1 = 0, and let S^* and K denote the subclasses of A which consist of starlike and convex functions, respectively.

Further, let $J(\alpha, f(z))$ denote the operator

$$J(\alpha,f(z)) \equiv (1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)}\right),$$

where $\alpha > 0$ and $f(z) \in A$.

In [4] Mocanu has introduced the classes M_{α} of α -convex functions under the condition $\text{Re}\{J(\alpha,\ f(z))\}>0$, $z\in U$, $f(z)\in A$. It is well-known that

$$M_{\alpha} \subset S^*, \qquad \alpha > 0.$$

The relation (2) we may write in the form

AMS Subject Classification (1991): 30C45

$$\operatorname{Re}\{J(\alpha,f(z))\} > 0 \quad \Rightarrow \quad \operatorname{Re}\{\ \frac{zf'(z)}{f(z)}\ \} > 0, \quad z \in U, \quad \alpha > 0,$$

or equivalently:

(3)
$$\left|\arg J(\alpha, f(z))\right| < \frac{\pi}{2} \Rightarrow \left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{2}, z \in U, \alpha > 0.$$

Now, we may put an expected question about constants β and γ , $0<\beta$, γ \leq 1, such that the following implication

$$\left|\arg J(\alpha, f(z))\right| < \beta \frac{\pi}{2} \Rightarrow \left|\arg \frac{zf'(z)}{f(z)}\right| < \gamma \frac{\pi}{2} \quad (z \in U, \alpha > 0)$$

is true. In that sense, Theorem 1 in the next section gives an answer.

Also, we need some notions about subordination.

Let f(z) and F(z) be analytic in U. The function f(z) is subordinate to F(z), written f(z) << F(z), if f(z) is univalent, f(0) = F(0) and $f(U) \in F(U)$.

For the proof of our main result we use the following lemma due to Miller and Mocanu [2].

LEMMA A. Let q(z) be univalent in U and let $\theta(w)$ and $\phi(w)$ be analytic in a domain D containing q(U), with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$ and suppose that

(i) Q(z) is starlike in U, and

$$(ii) \ \operatorname{Re} \{ \ \frac{zh'(z)}{Q(z)} \ \} \ = \ \operatorname{Re} \{ \ \frac{\theta'(q(z))}{\phi(q(z))} + \frac{zQ'(z)}{Q(z)} \ \} \ > \ 0 , \qquad z \in U.$$

If p(z) is analytic in U, with p(0) = q(0), $p(U) \in D$ and

(4)
$$\theta(p(z)) + zp'(z)\phi(p(z)) \ll \theta(q(z)) + zq'(z)\phi(q(z)) = h(z)$$

then $p(z) \ll q(z)$, and q(z) is the best dominant of (4).

We note that the univalent function q(z) is said to be a dominant of differential subordination (4) if $p(z) \ll q(z)$ for all p(z) satisfying (4). If $\tilde{q}(z)$ is a dominant of (4) and $\tilde{q}(z) \ll q(z)$ for all dominants q(z) of (4) then $\tilde{q}(z)$ is said to be the best dominant of (4).

More about differential subordinations we can find in [1] and [2].

2. Main result

THEOREM 1. Let $J(\alpha,f(z))$ be defined by (1) for $\alpha>0$ and $f(z)\in A$, and let $0<\gamma\le 1$ be given. If

(5)
$$\left|\arg J(\alpha, f(z))\right| < \beta \frac{\pi}{2}, \quad z \in U,$$

where

(6)
$$\beta = \frac{2}{\pi} \arctan \left(\operatorname{tg} \frac{\gamma \pi}{2} + \frac{\alpha \gamma}{2 \cos \frac{\gamma \pi}{2}} \right),$$

then

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \gamma \frac{\pi}{2}$$
.

For the proof of this theorem we use the following

LEMMA 1. Let p(z) be analytic in U with p(0)=1 and let $\alpha>0$, $0<\gamma\leq 1$. If

(7)
$$p(z) + \alpha z \frac{p'(z)}{p(z)} \ll \left(\frac{1+z}{1-z}\right)^{\beta}, \quad z \in U,$$

where β is given by (6), then $p(z) \ll (\frac{1+z}{1-z})^{\gamma}$.

Proof. In Lemma A we choose $q(z)=(\frac{1+z}{1-z})^\gamma$, $0<\gamma\le 1$, and $\phi(w)=\frac{\alpha}{w}$, $\phi(w)=w$. Then we have that the function

$$Q(z) = zq'(z)\phi(q(z)) = \alpha \frac{zq'(z)}{q(z)} = \alpha \gamma \frac{2z}{1-z^2}$$

is really starlike in U, and

$$\operatorname{Re} \{ \ \frac{\theta' \left(\mathbf{q}(\mathbf{z}) \right)}{\phi \left(\mathbf{q}(\mathbf{z}) \right)} + \mathbf{z} \ \frac{Q' \left(\mathbf{z} \right)}{Q(\mathbf{z})} \ \} \ = \ \operatorname{Re} \{ \ \frac{1}{\alpha} \ \mathbf{q}(\mathbf{z}) \ + \ \mathbf{z} \ \frac{Q' \left(\mathbf{z} \right)}{Q(\mathbf{z})} \ \} \ > \ 0, \qquad \mathbf{z} \ \in \ \mathbb{U},$$

i.e. the conditions (i) and (ii) of Lemma A are satisfied. By applying that lemma we get that if p(z) is analytic in U with p(0) = 1, then the following implication

(8)
$$p(z) + \alpha z \frac{p'(z)}{p(z)} \ll q(z) + \alpha z \frac{q'(z)}{q(z)} = (\frac{1+z}{1-z})^{\gamma} + \alpha \gamma \frac{2z}{1-z^2} \equiv h(z)$$

is true and this is the best dominant.

For the function h(z) defined in (8) we have

(9)
$$h(e^{i\zeta}) = (i \operatorname{ctg} \frac{\zeta}{2})^{\gamma} + \alpha \gamma \frac{i}{\sin \zeta}.$$

Since

$$\label{eq:ctg_sigma} \mbox{i ctg $\frac{\zeta}{2}$ = } \left\{ \begin{array}{ll} \mbox{ctg $\frac{\zeta}{2}$ $e^{\mbox{$i$}}$ $\frac{\pi}{2}$} & , & 0 < \zeta < \pi \\ \\ \mbox{$-ctg$ $\frac{\zeta}{2}$ $e^{\mbox{$-i$}}$ $\frac{\pi}{2}$} & , & -\pi < \zeta < 0, \end{array} \right.$$

from (9) we get

(10)
$$h(e^{i\zeta}) = (\pm ctg \frac{\zeta}{2})^{\gamma} cos(\pm \gamma \frac{\pi}{2}) + i \left[(\pm ctg \frac{\zeta}{2})^{\gamma} sin(\pm \gamma \frac{\pi}{2}) + \frac{\alpha \gamma}{\sin \zeta} \right],$$

where we choose "+" in the case $0<\zeta<\pi$ and "-" in the case $-\pi<\zeta<0$. From (10) we easily conclude that $h(e^{i\zeta})$ is symetric on the real axis and we only consider the case $0<\zeta<\pi$. In that case $Re\{h(e^{i\zeta})\}$ and $Im\{h(e^{i\zeta})\}$

are non-negative and if we put ctg $\frac{\zeta}{2}$ = t (0 < t < + ∞) we obtain

(11)
$$\operatorname{tg}(\operatorname{arg}h(e^{i\zeta})) = \operatorname{tg}\frac{\gamma\pi}{2} + \frac{.\alpha\gamma}{\cos\frac{\gamma\pi}{2}} \cdot \frac{1+t^2}{2t^{1+\gamma}}.$$

Further, for 0 < t ≤ 1 we have

$$\frac{1+t^2}{2t^{1+\gamma}} \ge \frac{1+t^2}{2t} \ge 1,$$

while for $1 \le t \le +\infty$

$$\frac{2t^{1+\gamma}}{1+t^2} \le \frac{2t^2}{1+t^2} = 2 - \frac{2}{1+t^2} < 2, \qquad \text{i.e. } \frac{1+t^2}{2t^{1+\gamma}} > \frac{1}{2} \ .$$

In both these cases we have that $\frac{1+t^2}{2t^{1+\gamma}} > \frac{1}{2}$, and from (11) we get

tg (arg h(e^{iζ})) > tg
$$\frac{\gamma\pi}{2}$$
 + $\frac{\alpha\gamma}{2\cos\frac{\gamma\pi}{2}}$,

which implies

$$\text{arg h(e}^{\,\mathrm{i}\,\zeta}) \,>\, \text{arctg (tg}\,\,\frac{\gamma\pi}{2}\,+\,\frac{\alpha\gamma}{2\mathrm{cos}\,\,\frac{\gamma\pi}{2}}\,) \,=\, \frac{\beta\pi}{2}\,\,, \qquad 0\,<\,\zeta\,<\,\pi,$$

where β is defined by (6).

Therefore, for 0 < $|\zeta|$ < π we have

(12)
$$\left| \text{arg } h(e^{i\zeta}) \right| > \frac{\beta\pi}{2}$$
.

From the previous inequality (12) we conclude that

$$(13) \qquad (\frac{1+z}{1-z})^{\beta} \ll h(z).$$

Now, if the condition (7) is satisfied, then from (13) and (8) we finally get

$$p(z) \ll \left(\frac{1+z}{1-z}\right)^{\gamma}$$
.

Proof of Theorem 1. If in Lemma 1 we put $p(z)=\frac{zf'(z)}{f(z)}$, where $f(z)\in A$, then we have the statement of theorem. m

For $\gamma = 1$ in Theorem 1 we have $\beta = 1$ and the following

COROLLARY 1. Let $f(z) \in A$ and $J(\alpha, f(z)), \alpha>0$, be defined by (1). If

$$\left|\arg J(\alpha, f(z))\right| < \frac{\pi}{2}$$
,

then

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \frac{\pi}{2}$$
,

hich gives the relation (3). ■

If we put $\alpha = 1$ in Theorem 1, then we get

COROLLARY 2. Let $f(z) \in A$ and $0 < \gamma \le 1$ be given. If

$$\left| arg \left(1 + \frac{zf''(z)}{f'(z)} \right) \right| < \beta \frac{\pi}{2}$$
,

where

$$\beta = \frac{2}{\pi} \arctan \left(tg \, \frac{\gamma \pi}{2} + \frac{\gamma}{2 \cos \frac{\gamma \pi}{2}} \right),$$

then

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \gamma \frac{\pi}{2}$$
.

REFERENCES

- S.S. MILLER & P.T. MOCANU, Differential subordination and univalent function, Michigan Math. J. 28 (1981), 157-171.
- [2] S.S. MILLER & P.T. MOCANU, On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), 185-195.
- [3] P.T. MOCANU, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj), 11(34) (1969), 127-133.
- [4] CH. POMMERENKE, Univalent Functions, Vanderhoeck and Ruprecht, Göttingen, 1975.

M. Obradović, S. Fukui, T. Sekine O α -KONVEKSNOSTI I ZVEZDOLIKOSTI

U radu se daje jedan uslov za α -konveksnost funkcija pri kome je ispunjeno $\left| \arg \left(zf'(z)/f(z) \right) \right| < \gamma \pi/2 \; (0 < \gamma \le 1).$

Department of Mathematics Faculty of Technology and Metallurgy 4 Karnegieva Street 11000 Belgrade Yugoslavia