F. Cammaroto * , T. Noiri FUNCTIONS WITH γ -CLOSED GRAPHS AND R-COMPACT SPACES (Received 16.11.1990.)

Abstract. In this paper we introduce the notion of a γ -closed graph and obtain a characterization of R-compact spaces by utilizing functions with a γ -closed graph.

0. Introduction

In 1973, Kasahara [6] denoted by S a class of spaces containing the class of Hausdorff completely normal and fully normal spaces and utilized the class S to obtain a characterization of compact spaces. In 1975, Herrington and Long [5] obtained a characterization of H-closed spaces stated as follows:

THEOREM A (Herrigton & Long [5]). A Hausdorff space Y is H-closed if and only if for every space X in the class S, each function $f:X \to Y$ with a strongly closed graph is weakly continuous. \blacksquare

Quite recently, Bella and Cammaroto [1] have obtained the following characterization: a Urysohn space Y is Urysohn closed if and only if for every space X \in S, each function $f:X \to Y$ with a ν -closed graph is ν -continuous. Recently, in [3] and [4], the present authors have introduced and investigated the notions of almost γ -continuous functions and R-compact spaces, respectively. The purpose of this paper is to introduce functions with a γ -closed graph and to obtain a characterization of R-compact spaces parallel to Theorem A.

1. Preliminaries

Throughout the present paper spaces will always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let

AMS Subject Classification (1991): 54C08, 54D20
* This research was supported by MURST "Fondi 40%", Italy

S be a subset and x a point of a topological space. The closure and the interior of S are denoted by Cl(S) and Int(S), respectively; the family \mathcal{U}_x of all neighborhoods of x is called the neighborhood filter base of x. We denote by $\overline{\mathcal{U}}_x$ the closed filter on X having $\{\text{Cl}(V): V \in \mathcal{U}_t\}$ as a basis. Moreover, the neighborhood filter of $\overline{\mathcal{U}}_x$ will be denoted by $\mathcal{U}(\overline{\mathcal{U}}_x)$. A point $x \in X$ is said to be in the γ -closure of S, denoted by γ -Cl(S), if S \cap V \neq \emptyset for every $V \in \mathcal{U}(\overline{\mathcal{U}}_x)$. A subset S is said to be γ -closed if γ -Cl(S) = S. A subset S is said to be regular-closed if Cl(IntS) = S.

- 1.1. DEFINITION. Let D be a directed set, $u:D \to X$ a net in a space X and $T = \{d \in D: a < d\}$. Then:
- (1) u is said to γ -converge to $x \in X$ if for each $V \in \mathcal{U}(\overline{\mathcal{U}}_x)$ there is $a \in D$ such that $u(T_x) \subset V$;
- (2) u is said to γ -adherent to $x\in X$ [1] if $u(T_a)\cap V\neq\emptyset$ for every u in u and every $v\in u(\overline{u}_v)$.
- 1.2. LEMMA. Let A be a subset and x a point of a space X. Then $x \in \gamma\text{-Cl}(A)$ if and only if there exists a net $u:D \to A$ (c X) such that u $\gamma\text{-converges to } x$.
- 1.3. DEFINITION. Let S be a subset of a space X. (1) A cover $\{V_\alpha: \alpha \in A\}$ of S by open sets of X is said to be regular if for each $\alpha \in A$ there exists a nonempty regular closed set F_α of X such that $F_\alpha \subset V_\alpha$ and S $\subset \cup \{Int(F_\alpha): \alpha \in A\}$; (2) S is said to be R-compact relative to X if every regular cover of S has a finite subcover; (3) A space X is said to be R-compact [4] if X is R-compact relative to X. \blacksquare
- 1.4. PROPOSITION. If K is a γ -closed subset of an R-compact space X, then K is R-compact relative to X.
- Proof. Let $\{V_{\alpha}: \alpha \in \mathcal{A}\}$ be any regular cover of K. Since K is γ -closed, for each $x \in X \setminus K$ there exists $V_x \in \mathcal{U}(\overline{\mathcal{U}}_x)$ and hence $W_x \in \mathcal{U}_x$ such that $x \in W_x \subset Cl(W_x) \subset V_x$ and $V_x \cap K = \emptyset$. Therefore, the family $\{V_{\alpha}: \alpha \in \mathcal{A}\} \cup \{V_x: x \in X \setminus K\}$ is a regular cover of X. Since X is R-compact, there exist a finite subset \mathcal{A}_0 of \mathcal{A} and a finite number of points x_1, \ldots, x_n in $X \setminus K$ such that $X = [\cup \{V_\alpha: \alpha \in \mathcal{A}\}] \cup [\cup \{V: i = 1, 2, \ldots, n\}]$. Hence, we obtain $Kc \cup \{V_\alpha: \alpha \in \mathcal{A}\}$. This shows that K is R-compact relative to X. \blacksquare
- 1.5. DEFINITION. A function $f:X \to Y$ is said to be almost γ -continuous [3] if for each $x \in X$ and each $V \in \mathcal{U}(\overline{\mathcal{U}}_x)$ there exists $U \in \mathcal{U}_x$ with $f(U) \subset V$. A function $f:X \to Y$ is said to be weakly continuous [7] if for each $x \in X$ and each open neighborhood V of f(x) there exists an open neighborhood V of X such that X and X is said to be weakly continuous [7].

- 1.6. REMARK. It is shown in [3] that every weakly continuous function is almost γ -continuous but not conversely.
 - 1.7. LEMMA. For a function $f:X \rightarrow Y$ the following are equivalent:
 - (a) f is almost γ-continuous.
- (b) For each $x \in X$ and each net $u:D \to X$ converging to x, the net $f \cdot u:D \to Y$ γ -converges to f(x).
 - (c) $f(Cl(A)) \subset \gamma Cl(f(A))$ for every $A \subset X$.
- Proof. (a) \Rightarrow (b): Let $x \in X$ and let $u:D \to X$ be a net converging to x. Since f is almost γ -continuous, for each $V \in \mathcal{U}(\mathcal{U}_{f(x)})$ there exists $U \in \mathcal{U}_{x}$ such that $f(U) \subset V$. As u converges to x, there exists $a \in D$ such that $u(T_a) \subset U$. Therefore, we obtain $(f \cdot u)(T_a) \subset f(U) \subset V$ and hence the net $f \cdot u$ γ -converges to f(x).
- (b) \Rightarrow (c): Let A be any subset of X and $x \in Cl(A)$. There exists a net $u:D \to A$ (c X) converging to x. Therefore, $f \cdot u:D \to f(A)$ (c Y) γ -converges to f(x) and hence, by Lemma 1.2 $f(x) \in \gamma$ -Cl(f(A)). Therefore, we have f(Cl(A)) c γ -Cl(f(A)).
 - (c) ⇔ (a): This is proved in Theorem 2.2 of [3]. ■

2. 7-closed graphs

For a function $f: X \to Y$, the subset $\{(x, f(x)): x \in X\}$ of the product space $X \times Y$ is called the graph of f and is denoted by G(f). Long and Herrington [8] defined a function $f: X \to Y$ to have a strongly closed graph if for each $(x,y) \notin G(f)$ there exist open sets U and V containing x and y, respectively, such that $[U \times Cl(V)] \cap G(f) = \emptyset$.

- 2.1. DEFINICIJA. For a function $f:X \to Y$ the graph G(f) is said to be γ -closed with respect to Y (or briefly γ -closed) if for every $(x,y) \notin G(f)$ there exist $U \in \mathcal{U}$ and $V \in \mathcal{U}(\bar{\mathcal{U}})$ such that $[U \times V] \cap G(f) = \emptyset$.
- 2.2. LEMMA. A function $f:X\to Y$ has a γ -closed graph if and only if for each $(x,y)\notin G(f)$ there exist $U\in \mathcal{U}_x$ and $V\in \mathcal{U}(\overline{\mathcal{U}}_y)$ with $f(U)\cap V=\emptyset$.
- 2.3. REMARK. It is obvious that any function with a γ -closed graph has also a strongly closed graph.
- 2.4. DEFINITION. A space X is said to be strongly Urysohn [2] if for each pair of distinct points x,y in X there exist $U \in \mathcal{U}(\overline{\mathcal{U}}_x)$ and $V \in \mathcal{U}(\overline{\mathcal{U}}_y)$ such that $U \cap V = \emptyset$.

It is shown in [2; Example 1] that every strongly Urysohn space is Urysohn but not conversely.

2.5. THEOREM. If $f:X\to Y$ is almost γ -continuous and Y, is strongly Urysohn, then G(f) is γ -closed.

Proof. Let $(x,y) \notin G(f)$. Then $f(x) \neq y$ and hence there exist elements $W \in \mathcal{U}(\overline{\mathcal{U}}_{f(x)})$ such that $W \cap V = \emptyset$. Since f is almost γ -continuous, there is $U \in \mathcal{U}_{x}$ such that $f(U) \subset W$. Therefore, we have $f(U) \cap V = \emptyset$. It follows from Lemma 2.2 that G(f) is γ -closed. \blacksquare

2.6. THEOREM. If $f:X\to Y$ is weakly continuous and Y is Urysohn, then G(f) is $\gamma\text{-closed}$.

Proof. Let $(x,y) \notin G(f)$. Then $f(x) \neq y$ and hence there exist open sets V and W such that $f(x) \in V$, $y \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Let $V_y = Y \setminus Cl(V)$. Then $y \in W \subset Cl(W) \subset V_y \in \mathcal{U}(\overline{\mathcal{U}}_y)$. Since f is weakly continuous there exists $U_x \in \mathcal{U}_x$ such that $f(U_x) \subset Cl(V)$. Therefore, we obtain $f(U_x) \cap V_y = \emptyset$ and, by Lemma 2.2, G(f) is γ -closed.

- 2.7. COROLLARY. (Long and Herrington [8]). If $f:X\to Y$ is weakly continuous and Y is Urysohn, then G(f) is strongly closed.
 - 2.8. THEOREM. If a function $f:X \to Y$ has a γ -closed graph, then:
 - (a) $f^{-1}(K)$ is closed in X for each K R-compact telative to Y;
 - (b) f(K) is x-closed in Y for each compact set K in X.

Proof. We shall prove only the statement (a) since the statement (b) can be proved similarly. Let $x \notin f^{-1}(K)$. For each $y \in K$, $(x,y) \notin G(f)$ and as G(f) is y-closed, by Lemma 2.2, there are $U_y \in \mathcal{U}_x$ and $V_y \in \widetilde{\mathcal{U}}_y$ such that $f(U_y) \cap V_y = \emptyset$. The family $\{V_y : y \in K\}$ is a regular cover of K. Since K is R-compact relative to Y_y , there exist finitely many points y_1, \ldots, y_n in K such that $K \subset U(V_y : i = 1, \ldots, n)$. Let $U = \cap \{U_y : i = 1, \ldots, n\}$. Then $U \in \mathcal{U}_x$ and $f(U) \cap K = \emptyset$. Therefore, we have $U \cap f^{-1}(K) = \emptyset$ and so $x \notin Cl(f^{-1}(K))$. This means that $f^{-1}(K)$ is closed in X. \blacksquare

3. R-compact spaces

3.1. THEOREM. Let Y be an R-compact space. For every space X each function $f:X\to Y$ with a γ -closed graph is almost γ -continuous.

Proof. Let $x \in X$ and $V \in \mathcal{U}(\overline{\mathcal{U}}_{f(x)})$. There is $W \in \mathcal{U}_{f(x)}$ such that $f(x) \in W \subset Cl(W) \subset V$. For each $y \in Y \setminus W$, $(x,y) \notin G(f)$ and hence, by Lemma 2.2, there exist $U = \mathcal{U}_{x,y} = \mathcal{U}_{x}$ and $V \in \mathcal{U}_{y} = \mathcal{U}_{x}$ such that $f(U = \mathcal{U}_{x,y}) \cap V = \emptyset$. The family $V \cup \{V : y \in Y \setminus W\}$ is a regular cover of Y. Since Y is R-compact there are finitely many points y_1, \dots, y_n in $Y \setminus W$ such that $Y = V \cup \{V : i \leq n\}$. Put

 $U=\cap\{\bigcup_{x,y_i}:i\leq n\}\,. \mbox{ Then we have }U\in\mathcal{U}_x\mbox{ and }f(U)\subset V\mbox{ which means that }f\mbox{ is almost }\gamma\mbox{-continuous.}$

Following Kasahara [6], we denote by S a class of spaces containing the class of Hausdorff completely normal and fully normal spaces and use S to obtain a characterization of R-compact spaces.

3.2. THEOREM. Let Y be a Urysohn space. If for every space X \in S, each function $f:X \to Y$ with a γ -closed graph is almost γ -continuous, then Y is R-compact.

Proof. Assume that Y is not R-compact. We proceed to construct a space X in the class S and a function $f: X \to Y$ which has a γ -closed graph but is not almost γ -continuous. Since Y is not R-compact, there exists a net $u:D \rightarrow$ Y having no γ -adherent points in Y [4; Theorem 3.6]. Thus for every y \in Y there exist $V \in \mathcal{U}(\overline{\mathcal{U}})$ and $a \in D$ such that $u(T_a) \cap V = \emptyset$. Choose a point $\infty \notin D$ and put $X = D \cup \{\infty\}$. Following [6] we have a topological space X from S which has the property: if $U(\infty)$ is an open set containing ∞ , then there exists a \in D such that T $_{a}$ \cup $\{\omega\}$ \subset U(ω). Let y^{*} \in Y. Define a function f:X \to Y by $f \mid D = u$ and $f(\infty) = y$. We shall prove that G(f) is γ -closed. (i) Let $(x,y) \notin G(f)$ and $x \in D$. Since Y is Urysohn, there exist $A \in \mathcal{U}_{f(x)}$ and $B \in \mathcal{U}_{f(x)}$ $\mathcal U$ such that $Cl(A) \cap Cl(B) = \emptyset$. If $V = X \setminus Cl(A)$, then $y \in B \subset Cl(B) \subset V \in \mathcal U$ $\mathcal{U}(\overline{\mathcal{U}})$ and $f(x) \notin V$. Since $U = \{x\}$ is open in X, $f(U) \cap V = \emptyset$. (ii) Let (x,y) \notin G(f) and x = ∞ . Then f(∞) = $y^* \neq y$ so that there exist A \in \mathcal{U}^* and B \in \mathcal{U}^* such that $Cl(A) \cap Cl(B) = \emptyset$. Put $V_1 = Y \setminus Cl(A)$. Then $y \in B \subset Cl(B) \subset V_1 \in Cl(A)$ $\mathcal{U}(\bar{\mathcal{U}})$ and $y^* = f(\infty) \notin V_1$. Since u has not γ -adherent points, $u(T_1) \cap V_2 = \emptyset$ for some $a \in D$ and some $V \in \mathcal{U}(\bar{\mathcal{U}})$. Therefore, for $V = V_1 \cap V_2 \in \mathcal{U}(\bar{\mathcal{U}})$ and U=T \cup $\{\omega\}$ we have $f(U)\cap V=\emptyset$. From (i) and (ii) it follows that G(f)is γ -closed. Finally, we shall show that f is not almost γ -continuous. The injection j:D X defines a net in X converging to $\infty \in X$. However, $f \cdot j = u$: $D \rightarrow Y$ does not converge to $y^* = f(\omega)$ because y^* is not a γ -adherent point of u. It follows from Lemma 1.7 that f is not almost γ-continuous.

As an immediate consequence of Theorems 3.1 and 3.2 we have

3.3. COROLLARY. A Urysohn space Y is R-compact if and only if for each space $X \in S$ every function f:X Y with a γ -closed graph is almost γ -continuous. \blacksquare

REFERENCES

 A. BELLA & F. CAMMAROTO, Characterizations of Urysohn-closed spaces, (submitted).

- [2] F. CAMMAROTO & G. LO FARO, $T_{2,5}$ weakly-compact and minimal $T_{2,5}$ -spaces, Proc. Nat. Acad. Sci. India 54(A)IV (1984), 431-437.
- [3] F. CAMMAROTO & T. NOIRI, Almost γ -continuous functions, (to appear).
- [4] F. CAMMAROTO & T. NOIRI, On R-compact spaces, (to appear).
- [5] L.L. HERRINGTON & P.E. LONG, Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48(1975), 469-475.
- [6] S. KASAHARA, Characterizations of compactness and countable compactness, Proc. Japan Acad. 49(1973), 523-524.
- [7] N. LEVINE, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68(1961), 44-46.
- [8] P.E. LONG & L.L. HERRINGTON, Functions with strongly-closed graphs, Boll. Un. Mat. Ital. (4) 12(1975), 381-384.
- [9] M.K. SINGAL & A.R. SINGAL, Almost-continuous mappings, Yokohama Math. J. 16(1968), 63-73.

F. Cammaroto, T. Noiri

FUNKCIJE SA 7-ZATVORENIM GRAFOVIMA I R-KOMPAKTNI PROSTORI

U radu je uveden pojam funkcije sa γ-zatvorenim grafom i date neke osobine takvih funkcija. Jezikom γ-zatvorenog grafa daje se jedna karakterizacija R-kompaktnih prostora.

F. Cammaroto Dipartimento di Matematica Universita di Messina 98166 Sant'Agata (Messina) Italy T. Noiri Department of Mathematics Yatsushiro College of Technology Yatsushiro, Kumamoto, 866 Japan