Veselin Perić, Veljko Vuković ON NONASSOCIATIVE LEFT NEAR-RINGS WITH CERTAIN DESCENDING CHAIN CONDITION PROPERTY

(Received 12.04.1990.)

Abstract. Associative left or right near-rings S with the descending chain condition (dcc) on right or left (principal) S-subgroups have been considered by Laxton [1], Beidleman [2], Ligh [3] and others. We iniciate here a study of (nonassociative) left near-rings S with one or both dcc properties (*) and (**) . We obtain results on the existence of the identity of S, and the right or left invertibility of certain elements in S, particularly for the case when the additive group of S is simple.

1. Introduction

Let S be a left associative near-ring and x an element in S. The set $xS = \{xs | s \in S\}$ is a right S-subgroup and it is called the rigt principal or cyclic S-subgroup generated by x. In several investigations of associative near-rings S the descending chain condition (dcc) on right (principal) S-subgroups has been assumed ([1], [2], [3]). We consider here a (nonassociative) left near-ring S and we will frequently assume one (or both) descending chain conditions:

(*) For every x in S the descending chain
$$X_1 \supseteq X_2 \supseteq \ldots \supseteq X_n \supseteq \ldots$$
, where

(1)
$$X_n = x(x(...(xS)...), x appearing n-times,$$

is stable i.e. for some n , $\underset{n+k}{X}=\underset{n}{X}$, for every $k\in\mathbb{N}.$

(**) For every x in S the descending chain $X_1 \ge X_2 \ge \dots \ge X_n \ge \dots$, where

(1')
$$X_n' = (...(Sx)...x)x$$
, x appearing n-times

is stable i.e. for some n , $\overset{,}{\underset{n+k}{\bigvee}}=\overset{,}{\underset{n}{\bigvee}},$ for every $k\in\mathbb{N}.$

AMS Subject Classification (1991): 16Y30

2. Near-rings with the dcc property

For a (nonassociative) near-ring S, X_n does not have to be a right S-subgroup, but under certain associativity assumption X_n 's will be S-subgroups.

LEMMA 1. Let S be a (nonassociative) left near-ring and $x \in S$. All X's are S-subgroups iff

 $(2) (x, X_{n-1}, S) \subseteq X_n , n \in \mathbb{N},$

where $X_0 = S$ and for the $A, B, C \subseteq S$, $(A, B, C) = \{-a(bc) + (ab)c | a \in A, b \in B, c \in C\}$.

Proof. It is easy to see that every X_n , $n \in \mathbb{N}$, is a subgroup of (S,+). Supposing (2) we prove , by induction on n , that every X_n is a right S-subgroup. Let n=1 and let $xs\in X_1$, $s_1\in S$. Then:

$$(xs_i)s_1 = x(ss_1) - (-(xs)s_1 + x(ss_1)) \in X_1,$$

since $x(ss_1) \in X_1$ and by assumption $(x, S, S) \subseteq X_1$.

Let us suppose now that n > 1 and X is a right S-subgroup. Then for x = x(x...(xs)...) \in X and s \in S we have

Conversely, let X_n be a right S-subgroup for $n \in \mathbb{N}$. Then for n = 1 and $s, s_1 \in S$ we have $-x(ss_1) + (xs)s_1 \in X_1$, since $ss_1 \in S$ and $(xs)s_1 \in X_1$. For n > 1 and $s, s_1 \in S$ we have $-(xx_{n-1})s_1 + (xx_{n-1})s_1 = -(xx_{n-1})s_1 + x_n s_1 \in X_n$ since ,by assumption, $x \in X_n$ and $x \in X_n$ and $x \in X_n$, henceforth $(xx_{n-1})s_1 \in X$.

REMARK 2. For an associative left near-ring S, $X_n = x^n S$, hence $x^n S \subseteq X_{n-1}$, $n \in \mathbb{N}$. If S is nonassociative we define x^n recursively as follows:

$$x^1 = x$$
, and $x^n = x^*x^{n-1}$ for $n > 1$.

Now we can prove the above inclusions under following assumption:

(3)
$$(x, x^{n-1}, S) \subseteq X_{n-1} \text{ for } n > 1.$$

For n = 1 we have namely $x^nS = X_n \subseteq X_{n-1}$ without any assumptions. Let n > 1 and suppose that $x^{n-1}S \subseteq X_{n-2}$. Then for every $s \in S$

$$x^{n} = x(x^{n-1}s) - (-(x^{n}s) + x(x^{n-1}s)) \in X_{n-1}$$

We note that (3) follows from (2). For n = 2 we have by (2)

$$(x, x^{n-1}, S) \subseteq (x, S, S) \subseteq X_1 = X_{n-1},$$

and for n > 2

$$(x, x^{n-1}, S) \subseteq (x, X_{n-2}, S) \subseteq X_{n-1}.$$

Moreover if (2) is valid for n=1 and for all $x\in S$, then y^nS is a right S-subgroup for all $y\in S$ and for all $n\in N$. By Lemma 1, y^nS is a right S-subgroup for some $y\in S$ and some $m\in N$ if and only if $(y^n,S,S)\subseteq y^nS$, and this is exactly (2) for n=1 and $x=y^n$.

REMARK 3. By Lemma 1, every (nonassociative) near-ring S with dcc property on right S-subgroups satisfying condition (2), satisfies (*) also.

After the introductory comments on dcc (*) we start with:

THEOREM 4. Let S be a (nonassociative) left near-ring satisfing (*). If there exists an element $a \in S$ which is not a left zero-divisor then a has a right identity $e = e_a$ and a right inverse a' (aa' = e). If moreover there exists at least one element $b \in S$ which is right regular ($xb = yb \Rightarrow x = y$) then a is the identity of S iff (xe)y = x(ey) for all $x, y \in S$.

Proof. Let a be a left regular element in S . Then by (*) we have $A_n = A_{n-1}$, $n \in N$ (for x = a we write A_n instead of X_n). But $A_{n+1} = aA_{n-1}$, and since a is not a left zero-divisor a is left regular being left distributive. Consequently we can cancell a in the above equation as long till we get the equation for n = 1 i.e. aS = a(aS). Canceling once more we get S = aS, hence a has a right identity $e = e_a$ and a right inverse a' in S.

Suppose now that b is a right regular element in S. If $e = e_a$ is the identity of S then (xe)y = x(ey) for all $x,y \in S$. Conversely, let (xe)y = x(ey) for all $x,y \in S$. Then for x = a we have ay = a(ey), hence y = ey for all $y \in S$ (a is left regular). take now y = b. Now we have (xe)b = xb, hence xe = x for all x because of the right regularity of b.

REMARK 5. If S is a (nonassociative) left near-ring satisfing 0x = x for all $x \in S$ then a right regular element $b \in S$ cannot be a right zero-divisor. Conversely, a right distributive element $b \in S$ which is not a right zero-divisor is right regular.

In the preceding proof it sufices that b is not a right zero-divisor if we assume (xe-x)b=0 for all $x\in S$. If S is d.g. then 0x=0 for all $x\in S$. Moreover, in this case (xe-x)b=0 for all $x\in S$ follows from the fact that (xe)y=x(ey) for all $x,y\in S$. Really, let $b=\sum \pm s_i$ for some distributive elements $s_i\in S$. Then:

 $(xe-x)b = \sum \pm (xe-x)s_i = \sum \pm ((xe)s_i-xs_i) = \sum \pm (xe)s_i - x(es_i)) = 0.$

By Remark 5 we have the following corollary of Theorem 4:

THEOREM 6. Let S be a d.g. (nonassociative) left near-ring satisfying (*). If there exists an element $a \in S$ which is not a left zero-divisor, then a has a right identity e = e and a right inverse a' in S. Moreover, if there exists at least one element $b \in S$ which is not a right zero-divisor, then e is the identity of S iff (xe)y = x(ey) for all x, y $\in S$.

If S is associative, the condition (xe)y = x(ey) for all $x, y \in S$ is automaticaly fulfilled. Moreover, the elements of S which are not zero-divisors form a multiplicative semigroup, hence all such elements have right (left) inverses iff they are invertible. From the two preceding theorems it follows:

COROLLARY 7. Let S be an associative (d.g) left near-ring satisfing (*). S is unitary iff there exists at least one element $a \in S$ which is not a left zero-divisor and at least one element $b \in S$ which is right regular (not a right zero-divisor). In this case every $a \in S$ which is not a left zero-divisor is invertible, hence S is an associative division left near-ring iff S has no proper left zero-divisors (cf. Th.2. in [3]).

3. Near-rings with dcc (*) and (**)

Similar, but not properly dual, results we can obtain using (**) instead of (*). The proofs are quite analogous and we formulate these results without proofs. Note that for any right distributive element x of a (nonassociative) left near-ring S, all X_n ' defined in (1') are subgroups of (S,+), and they are left S-subgroups iff

(2')
$$(S,X_{n-1}',x) \subseteq X_n', \ n \in \mathbb{N},$$
 where $X_0' = S$.

For S an associative left near-ring X $_{n}^{\prime}$ = Sx n , n \in N, hence Sx n \subseteq X_{n-1} , $n \in \mathbb{N}$. If S is not associative and we define $x^n = x^{n-1}x$, for n > 1, the above inclusions remain true iff

(3')
$$(S, x^{n-1}, x) \subseteq X', \quad n \ge 2.$$

(3') $(S,x^{n-1},x) \subseteq X_n', \quad n \ge 2.$ Since $x^{n-1} \in X_{n-2}'$ for $n \ge 2$, (3') follows from (2'), for x a right distributive element of S. For such x, Sx^n is a subgroup of (S,+) for all n \in N and $Sx^n = Y_1$ ' is a right S-subgroup if $(S, S, y) \subseteq Y_1$ ' and $Y_1' = Sy$. Thus if (2') is valid for all right distributive $x \in S$, then for such $x \in S X$ and Sx^n are right S-subgroups and $Sx^n \subseteq X_{n-1}$ for all $n \in N$.

Consequently, in a (nonassociative) left near-ring S satisfying dcc on left S-subgroups, S satisfies condition (**) for all right distributive elements $x \in S$ if S satisfies condition (2') for such elements.

Now we go to the result we announced. The first one corresponds to Theorems 4 and 6.

THEOREM 8. Let S be a (nonassociative) left near-ring satisfing (**). If $b \in S$ is a right regular element then b has a left unity $e = e_b$ and a left inverse b' in S . If moreover there exists at least one element $a \in S$ which is not a left zero-divisor, then e is the identity of S iff (xe)y = x(ey) for all $x,y \in S$. If S is distributive (that is to say if S is d.g. and S^2 additively commutative) then the above assertion holds for b which is not a right zero-divisor. \blacksquare

The following corollary of Theorem 8 is analogous to Corollary 7.

COROLLARY 9. Let S be an associative (distributive) left near-ring satisfing (**). S is unitary iff there exists at least one element $a \in S$ which is not a left zero-divisor, and at least one element $b \in S$ which is right regular (not a right zero divisor). In this case an element $b \in S$ is right regular (not a right zero-divisor) iff b is invertible, hence S is an associative left division near-ring iff all nonzero elements of S are right regular. \blacksquare

Now we combine the conditions (*) and (**). We consider first the non-associative case:

THEOREM 10. Let S be a (nonassociative) left near-ring satisfing (*) and (**). Suppose that there exists an element $a \in S$ which is not a left zero-divisor and an element $b \in S$ which is right regular. Then a has a right identity e' and b has a left identity e'. Also S is unitary iff (xe)y = x(ey) for e = e' and $x,y \in S$. In this case every element in S which is not a left zero-divisor has a right inverse and every elment in S which is regular has a left inverse in S. If S is distributive (that is to say if S is d.g. and S^2 is additively commutative) then the above assertion holds for b not a right zero-divisor. \blacksquare

From Theorem 10 it follows for the associative case:

COROLLARY 11. Let S be an associative (distributive) near-ring which satisfies (*) and (**). S is unitary iff there exists $b \in S$ which is right regular (not a right zero-divisor). In this case all such elements are invertible.

4. Near-rings with the simple additive group

We investigate here near-rings with the simple additive group starting with the following (well known) lemma (which we prove for the sake of completeness):

LEMMA 12. Let S be a (nonassociative) left near-ring with the simple additive group. Suppose that there exists a nonzero right distributive element $s \in S$. Then either ab = 0 for all $a,b \in S$, or s is right regular.

In the last case S has no nonzero left or right zero-divisors, hence every nonzero right distributive element in S is regular.

Proof. Define for $a \in S$, $T(a) = \{x \in S | ax = 0\}$. Since T(s) is a normal subgroup of the simple group (S,+), then $T(a) = \{0\}$ or T(a) = S. Since s is right distributive, $L(s) = \{y \in S | ys = 0\}$ is also a normal subgroup of (S,+), hence $L(s) = \{0\}$ or L(s) = S. If L(s) = S then as = 0 for all $a \in S$, hence T(a) = S i.e. ab = 0 for all $a,b \in S$. Let now $L(s) = \{0\}$. Then s is not a right zero-divisor, so s is right regular. But s is also left regular, since no nonzero element $a \in S$ can be a left and hence also a right zero divisor. Namely, such an element a is not in L(S), hence s is not in T(a) and thus $T(a) = \{0\}$.

Now we combine the above condition on the additive group of S with one or both of the conditions (*) and (**).

THEOREM 13. Let S be a (nonassociative) left near-ring satisfing (*). Suppose that (S,+) is simple, and that there exists a nonzero right distributive element $s \in S$. Then either ab = 0 for $a,b \in S$ or s is right regular. If s is right regular, s has a right identity $e = e_s$ and S is unitary iff (xe)y = x(ey) for all x, y $\in S$. In this case S has no nonzero left or right zero-divisors and every nonzero element in S has a right inverse in S.

Proof. By Lemma 12 either ab=0 for all $a,b\in S$, or s is right regular. In the last case S has no nonzero left or right zero-divisors and we can apply Theorem 4. \blacksquare

For S associative we have the following corollary of Theorem 13:

COROLLARY 14. Let S be an associative left near-ring satisfing (*). Moreover suppose that the additive group (S,+) of S is simple and that there exists a nonzero right distributive element $s \in S$. Then S is unitary and every nonzero element in S is invertible or ab = 0 for all $a,b \in S$. If S is d.g. we can omit the assumption on right distributivity of s. \blacksquare

Concerning the last assertion in the preceding corollary let us note something. If S is d.g. then L(s) is not necessarly a (normal) subgroup of (S,+) if s is not right distributive. But if s is different from zero and S is d.g., then s = $\sum \pm s_1$ for nonzero distributive s_i 's. Hence we can take any s_i instead of s if s is not distributive.

The following two results are analogous to two preceding ones.

THEOREM 15. Let S be a (nonassociative) left near-ring satisfing (**). Suppose that (S,+) is simple, and that there exists a nonzero right distributive element $s \in S$. Then either ab = 0 for $a,b \in S$ or s is right regular. If s is right regular, s has a left identity $e = e_s$ and S is unitary iff (xe)y = x(ey) for all $x,y \in S$. In this case S has no nonzero left or right zero-divisors and every right distributive nonzero element in S has a left inverse in S.

COROLLARY 16. Let S be an associative left near-ring satisfing (**). Moreover suppose that the additive group (S,+) of S is simple and that there exists a nonzero right distributive element $s \in S$. Then ab = 0 for all $a,b \in S$ or s is right regular. In the last case S is unitary, S has no nonzero left or right zero-divisors and every nonzero right distributive element in S is invertible. (If S is d.g. we can omit the assumption on right distributivity of s but not also in the above assertion).

Combining Theorems 13 and 14 we obtain the following result:

THEOREM 17. Let S be an (nonassociative) left near-ring satisfying (**). Moreover suppose that the additive group (S,+) of S is simple and that there exists a nonzero right distributive element $s \in S$. Then either ab = 0 for all $a,b \in S$ or s is right regular. If s is right regular then s has a left identity $e' = e'_s$ and a right identity $e'' = e''_s$, and S is unitary iff (xe)y = x(ey) for $e \in \{e',e''\}$, $x,y \in S$. In this case S has no left nor right proper zero-divisors, and each nonzero (right distributive) element in S has a right inverse (left inverse) in S. (Finally we note that for associative S Theorem 17 gives nothing more than Corollary 14.)

REFERENCES

- R.R. LEXTON, A radical and its theory for distributively generated near-rings, J.London Math. Soc. 38(1963), 40-49.
- [2] J.C. BEIDLEMAN, Distributively generated near-rings with descending chain condition, Math. Z. 91(1966), 65-69.
- [3] S. LIGH, Near-rings with descending chain condition, Compos. Math. 21 (1964), 162-166.

Veselin Perić, Veljko Vuković

O NEASOCIJATIVNOM LEVOM SKORO PRSTENU SA USLOVIMA OPADAJUĆIH LANACA

Rezultati dobijeni u ovom radu odnose se na potrebne i dovoljne uslove egzistencije jediničnog elementa u (neasocijativnom) skoro-prstenu S i leve ili desne invertibilnosti nekih elemenata u S (specijalno kada je njegova aditivna grupa prosta).

Veselin Perić Odsjek za matematiku PMF 71000 Sarajevo Yugoslavia Veljko Vuković Regionalni zavod za unapr. vaspitanja i obrazovanja 18000 Niš, Yugoslavia Correction to the paper:

V.Perić, V.Vuković: ON NONASSOCIATĪVĒ LEFT NEAR-RINGS WITH CERTAIN DESCENDING CHAIN CONDITION PROPERTIES, Zbornik radova Filozofskog fakulteta Niš, Serija Matematika, 5(1991), 5-12.

Page and Line	Set	For
	$= x(x_{n-1}s_1) - \dots + x(x_{n-1}s_1)$	$= (xx_{n-1})s_1 - \cdots (xx_{n-1})s_1$
	since x_{n-1}	since $x_{n-1}s_1$
6 20	$-x(x_{n-1}s_1) + \cdots - x(x_{n-1}s_1)$	$-(xx_{n-1})s_1 + \cdots - (xx_{n-1})s_1$
	$x(x_{n-1}s_1)$	$(xx_{n-1})s_1$
6 - 4, -3	(1 1 1)	(1,5 - 2,7 -
-2, -1	v^m	y^n
$\frac{-2,-1}{6-3}$	all m	all n
7 8	identity of	identityof
7 19		take
7 22	x for	0 for
7 - 7	$((xe)s_1 - x(es_1)) = 0$	$((xe)s_1 - X(es_1)) = 0$
8 - 5	results	result
9 18	$e_a^{\prime\prime}$	e'_a
9 19	some $e \in \{e''_a, e'_b\}$ and all	$e = e'_a$ and
9 20	element	elment
9 - 10	exist an element $a \in S$ which is	exists
	not a zero-divisor and an element	
10 3	T(a)	T(s)
10 10	T(s)	T(S)
10 14	satisfying	satisfing
11 16	a	an
<u>11 17</u>	(*) and (**)	(**)
<u>11 21</u>	for some e	for e
	and all x, y	x, y