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Abstract. Stabllity of trivial solution of a linear differential
equationswith the Markov coefficients is studed by the Lyaptnov method. We
construct asymptotic expansions for Lyapunov function of the linear

equations with small parameter and apply this result to problem in the
stability of the random oscillator.

1. Introduction

It is well known, that the equation of Mathe
X+ w(l+ hcosvt) x=0 (1.1

with the fraction 4w near to one, has two linear independent
selutions, from which one increases exponential when #+ o and the second
deceases exponential (see, for example, [13]). More of that, it is easy to

see that for small >0 and for 4o /v w 1, the equation

X +28x + o (1+ hcos vt) x = 0 (1.2)
has exponential increasing solution when t5 w, also. This phenomena is
calling parametric resonance. Of course, when there exist a constant phase
in parametric disturbance (i. e. when changing cos vt with cos (vt+p) in
(1.2)), the behaviour of the solutions is not changing.

Suppose now, that the phase of parametric disturbance e(t) is a
stationary Markov process with the values in [0,2n], E{e(t)}=0, and
consider the equation

¥+ 25% + o (1+ h cos(vi+p(t))) x =0 (1.3)
2

In this case, when fraction of frequencies 4m2/v = 1, it is
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naturally to speak about stochastic parametric resonance. There are
plenty papers about the behavior of the solutions of (1.3) ( see lists in
[10] and [14]). To the same problems are dedicating [2, 11, 121, in which
is used a variation of the second method of Ljapunov, as suggested in [8]
and develcoped for stochastic equations in [9]. In the following, we
suggest a method of analyses exponential p-stability trivial solutions of

(1.3), based on results in [11, 12].

2. Exponential stability 1Iin mean-square

Let us consider a differentlal eguation in R"

X = 4 () x (2.1)
where {A(y), ye¥} is a continuous matrix function on a compact ¥, {y(t),
tz0} is a homogeneous stochastic continuous Feller-Markov process [1] on ¥
with C-infinitesimal operator ¥£. We shell say that Lrivial solution of
(2.1) is exponent p-stabile for p>0, if for some <¢>0 and ¥>0, for every
yeY, t=zs=0 and XE[Rn, for the sciution of (2.1) with x(s)=x when y(s)}=y, is
valid an inequality

Elx(t)|P = ¢ e %2

(2.2)
When p=2, we ghell speak about exponent **-stable in mean-square.
Let. V be a space of symmetric continuous matrix (nxn) functions with the

T
norm v = sup |xviy)x[,
yey, |x|=1 T .
K =4{ veV: xviy)x = 0, Vye¥, ¥xeR"},
B = { velV: x 11}(_?);{ = 0, YveY, Vxz(}

The set K 1is closed in V, av +ev € K for every o =0, o =0, v ek, v ek
11 22 ¥y 2 i 2

and from velk, -vek it follows v=0. It is easy to see that from VELE', with
>0 small enough, it follows {ge¥: g-v <e} < K, and beside that, the
matrise unite I is in K. The set K, for which these cenditions hold, is
called a body conus [7], and the cperators in L(V), which leaves K
invariant, are calling positive. Note that, in cur case, vel if and only
if there exist positive number ¢, such that Ffor every xeR” and yeY,
XTV(y)x = clxlz. Beside that, from the properties of symmetiric metrix, it
follows that for each veV thers exist vle[}(, vzeﬂi such that v=vln1/2 and

v.EV, v, = v [reproduction of conus K [7]).

Let B be a space of symmetric matrix Baire functions on ¥ with the

norm v = Sup IxTV(y]xl. It is clear that V¢B. Let us define, when t20,
wel, |x|=1
operators in L(B) with the equality

(s*'vity) = [Ey{XT[t]v(y(t))X('t)}, (2.3)
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where X(f) is a matrix solution of (2.1), which satisfies a condition

X(0)=I, and [Ey is an conditional expectation when y(0)=y.

Theorem 2.1 The collection of operators {St,tEO} form a semigroup [4] on
B, which leaves space V and conus K invariant. The restriction of those
operators on ¥ form a semigroup of class (CO) with a generator

(W) (y) = 4" (PIvly) + viy)Aly) + (&) () (2.4)

Proof. Let us denote with P(1,y,x I',G) the transition probability of
Markov process {y(#), x(t), t=0}. Let xeR", yeY, veB. Then, for every t=0,
=03
LS x = E Ax X (t+r) vyl t+) )X t+e) x)

- Fr oy Potve, 7 % de 0

¥R"

= JT u"w(z)u Jf P(t,y, x da,dg)P(T,a, B, dz, du)
yR" YR .

= Il P(t,y,x,du,dR) Ey{ﬁ X (D)viy(c))X(T)BY
YR

= JI P(t,y,x da,dB) B'S"(v)(a) B
YR"

foStSTV](y] X

From that it follows semigroup property of operators {ST,t-‘:O}. Since
matrix function A(y) is continuous, the multiplication of elements veV¥ on
A(y) defines continuous operator on V. Beside that, from veD(¥#) (here, and
in the following, the application of operator £ to the matrix function is
on the elements) it follows that D(4)=D(£). So, the operator £ is a

mapping from a dense subspace I(A)in V to V, i. e. the operator £ in the

subspace CcY has the same property [1]. It can be proved that for each
real A > 2 sup A(y) = a and each g<V the equation dv-Av=g has a solutien
M=

veD(dL)cV (i. e. the specter «(£) of the operator £ is in the half-plane
{AeC: Re 2a=0} [11), for which Av-dv = (A-a) v . So, o is a generator of
some continuous semigroup {3 t=0} on V [4]. For each veD(4)cV and esach
sufficiently small £>0,

t t
(s*v)(y) = EL I+ A (y(T)) dr) wly(t)) (I + J Aly(t)) dT) }
(o] o]

+ t(Ev)(y) + olt),
uniformly for ye¥, from which follows that the generator of the
restriction S° on V is d, from (2.4), and that the semigroup g% with the
generator (2.4) is a restriction s* on V. The fact that s* is invarient in

K follows immediately from the definition of K. The theorem is proved. m
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Theorem 2.2. The tirivial solution (2.1) is exponentially stable In
mean-square if and only if there existi ref and qe& such that
dg = -r (2.8

Proof.  Let reﬁ, qei. Then, there exist such constants c1>0 and cz>0 such
that for each yeY and xeR" the inequality
2
|

cllxlz = x'r(y)x = c2|x|2. o, Ix1* = fviy)x = c2|x12. (2.8)

is wvalid. Then

E{ | x(t)]%)

1A

%EE{ A (H)gly(t))x(t) }
1

%IE{ X ()gly(t))X(t)x } = % X (stq) (y)x
1 1

From the properties of continuous semigroup (4], for each tzt=0 and qeD(d)

it follows an equation

t
stq = sq + J s"dg au,

T
from which, because of (2.4), (2.6) and (2.7),

(55q) (Px - X (ST (P)x = -F = (S"r) (y)x du

c
= - El I % (s"r) (y)x du.
2
Then
_(C1/C2]t - 2 e—(cl/cz)t

XT(Stq](y] x = qu(y) x e c, x|

so the sufficiency follows from (2.7). To prove the#necessary, we shall

use
def (] T o0 t
qly) “& J7 B { X (Or(y(£)X(1) } dt = JT (ST at (2.8)
for arbitrary ref. Then
() (y) = Lin % { £ (s*s"r)(y) dt- .r:‘(s‘r)(y) dat }
Avo
= lin 1 { 12 € 4 (0 e(y(8+0))X(E4+0)} dt
ado oy
- 40 E{ X ()r(y(£))X(8)} at }
= -r(y).

1t is clear that for some a»0, >0 and for each tz0, from the
continuousness of the matrix function A(y) and from the compactness of ¥
it follows the inequality

T

X(t) =1-c¢ I; e x(r) dr
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i. e. qu(y)x > 0 for each x#0, yeY,so from (2.8) and rek it follows geK.
The theorem is proved. m

The formula (2.8) determines the potential of the semigroup s* on an
element rek**, Since the conus K is reproductive, the potential U is
defined on V¥, i. e. from KcD(U) it follows VcD(U). So, the resolver RA of
semigroup exist for each real A=0 if and only if D(U)>K. But the operators
s* leave the reproductive conus K invariant, and by theorems about the
specter of commutative set of operator which leaves the reproductive conus

in Banach’s space invariant [7], it can be proved that from D(U)>K follows

o(d) ¢ {AeC: Re A=-p} for some p>0. So, we have

Corollary 2.1. The following statement are equivalent:
(a) Trivial solution (2.1) is exponent stable in mean-square;
(b) For each ref there exist

def

q(y) iy E{ e (y(e))x(t) } at,

with qeﬁ;
(c) There exist

def

aty) I? Ef X)X (t) } dt = e (s*1(y) at,

with gel;
(d) o(d) ¢ { AeC: Re A = —p<0 }. =

3. Stability in mean-square for small perturbations

Suppose that the differential equation (2.1) has coefficient near to
constant, i. e.

dx T ok

dx . [AO r)e Ak(y(t))]X. (3.1)
where ee[O.eol and so>0 are small enough, and the matrix functions Ak(y)
are continuous in y. Then, the operator & from (2.4) can be rewrite as

Tk
A(e) k;e 4

where the operators Ak satisfy

[ﬂovl(y)

A;v(y) + v(y)A0 + (Zv)(y),

i

(4 v)(y) Az(y)v(y] + v(p)A (y), kel,2...m.

Lemma 3.1. The specter Pg(ﬂo) of the operator ﬂo can be set as

PF(JO) = {h1+12+ha: Rl,haev(do), RSEG(E) }. (3.2)
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A proof follows from a represcentalion for ¥ as tensor product
v=R"oR 8cl1)
and the definition of Lthe operalor JO on a tensor viy) = (xeusf)(y)

dgrquf(y] by

(4 v)(y) = Agxu%(_y} + quAOI(y) + oxa (20 (y).

Use the result of [15], and the lemma ls proved.

Lemma 3.2. lLet the specler U(ﬂo) of the operator ﬂu can be setl as 0[&0) =
{0} w & , where the number zero is an isolation point of the specter wlth
finite multiplicity 1. Then, there exist such positive number SO>0, s0
that for each se[D,ED] the space VY can be disassembled In a sum of

subspaces invariant relative to d(e)
v

Vo= Wo[s] ® Wo(e) (3.3)
and the restriction Ale) of operator d(z) on UD(al has a discrete specter

Al(s)....hs(s} with total multiplicity I, limFHO AJ(E) = 0, and the
restriction R(s) of operators dle) on &u(cl does not have the specter’s
point on a circle {zeC: |z|sr} for some r>0, and for each BEiO.CO]. =

A proof follows from the facts that the operator ﬂo is closed, the
operators ﬁk’ k=1,2,...m are finite, and from the holomorphic properties

of linear operators in Banach's space [5].

Corollary 3.1. With the condition of Lemma 3.2 there is such base Flg) =
{fl(s), fz(e),...fl(e}} c Wo(e], so
d(=) Fle) = Fle) Ale), (3.4)
where Ale) is a malrix Ixl, and Fle) Ale) is a column-to-matrix product.
The base F(e) and the matrix Ale) can be set as serles in g, se[D,eal:
= 5
F(e) FD + SFI S (3.5)
Ale)= AD + eAl o, (3.8)

where o(A )={C}, and F is a base inV
o 0 o

Proof. Let FU be a base in V  and P(e) be a projector to the sum of root
subspaces, corresponding to the points of specter Al(s),...AsEc) of the
operator 4(e). From [5] it feollows that P({e) can be set as a series of
degrees of = on an interval [D,ED], so, for small enough ED, E(e)défF(e]FD
is a base in eru). Then use one of the methods for calculation the malrix

of operator in finite dimensional space to prove the formulas (3.4),

(3.8), (3.8). =m

Corollary 2.2. With the conditions of Lemma 3.2 there is a positive number

€4 such that for each ee(D.cUJ, exponentially stability of the trivial

52




solution {3.1) is equivalent to the existence of a nen-negative integer d,

such that

o
£ 34 i
g (y} = Z e qk{y), (3.7)
k=-d
Ale) goly) = -1, {(3.8)
o
oy e ij (¥ e &, (3.9)
k=

for each ee(O,sol
Procf. Let, for EE(O,EOJ, the trivial selution (3.1) is exponentially

stable in mean-square. Then 0 & o(d{e)), For all ee(D,ao), by the
Corollary 2.1. Since the number zero is an isolating point in the specter
of the operator ﬂo of the finite multiplicity, the resolver RA(Ej of the
operator £(e) has, when A=0, finite multiplicity pele [B], and, for small
enough €y for each EE{O,EO). RD(E} can be stated as a series

n - .k

R (&) kg_; c.
Then, we can find the solution of the equation (3.8) as a series (3.7).

Since se(O,sD) is arbitrary, the matrix function qk{y]. form (3.7), should

satisfy conditions:

ﬂoq-d = &
o7 _an ﬂqud 2 18
ﬂoq_l * £1q-2 " * nlome %, (3. 103
= T
&Oqa + ﬂlq_i R ﬁhq“m I, (3.11)
ﬂaqk + ﬂlqu1 + oLt a%qk_m =0, keb. {3.12)

When we find T4 d, from (3.10)--{(3.11), let us define a matrix
function

i) m
AE Y s-1

P € ): élj T e

s=1 i=1
Now we have the solution (3.10)--(3.11), so we can write the matrix

function ée from (3.9). This function, by the construction, satisfies
Ale) § = -1 + ep°. {2.12)
It is eclear that for small encugh 2, and for each ee{O,so)
-I+ept el

and by the condition of the Corollary 2.1 Oge(sd(e)), i. e. the solution




&

(3.13) aeis unique, and, again by the Corollary 2.1, % el for each

SE(O,EOL

Now let the solution (3.7) of the equation (3.8) exist and let (3.9)
is wvalid for each EE(O,COJ. Then, feor small enough so and for each
ee(O.eO), q8 should be in ﬁ, by (3.7), and then, by the Corollary 2.1, the
trivial solution (3.1) 1is exponentially stable in mean-square. The
corollary is proved. ®m

Note that
the number d is not fixed, but defined from the condition that (3.11) is
valid. As an example, consider an equation in R"
— = Aly(t)) x (3.14)

where {y(t), (=0} is a
homogeneous Feller-Markov process on a compact Y with an infinitesimal
operator £.
Corollary 3.3. Let o(2)={0}u¥, where Go6c{Ael: Re A<-p<0} and the
multiplicity of zero is equal to ocne (uniform ergedicity). If p is an
invariant measure of Markov process {y(t), tz0},

A=7T Aly) pldy), o(A)c{reC: Re A<O},
Y
then the trivial solution (3.14) is exponentially stable in mean-square

for each ee{O,eD) and for small enough so>0.
Proof. Because of all conditions, there exist [13] a positive definite
matrix a, which satisfies the equation of Lyapunov
A'g + g4 = 1.
Let qoev and
q° = g/etq.
0
Then
4(2) g5 (y) = A(p)7 + TAlY) + #g + = DY)
+ (£g)(y) + el4 (g (y) + q (DA
Since £q=0, the equation (3.10) is solved. The equation in (3.11) has the
form
(29)(y) = ~(4'(y)q + qA(y)) - L. (3.16)
This equation has a solution if and only if the right-hand side of (3.18)
is orthogonal to the kernel of conjugate operator. Since all elements In
the kernel N(ﬂ;) have the tenser form e@p. wheif p is any symmetric nxn
matrix (note that V=R"eR"eC(Y¥), i. e. V =R"sR’sC (¥)) and, because of the
conditions of Coroll:zry, the eguation (3.15) has a solution 5, then, from
the definition of scalar product and from the equation (3.15) we have

I spl(AT(y)7+gA(3) ) p+p] pldy) = Spl(A'grga+I)p] = O
Y
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for any matrix p. Then, the equation (3.16) has a solution, so the
equation

.&(E)qE = -7 + sa.

where E(y) = AT(quO(y)+qb(yJA(y].has a solution in £ for small enough g,

and each SE(U,SO]. From I—c& € &, for each ee[O,eg) and small enough co>0,
and from the Corollary 2.1 we see that the proved statement is valid. The

analogue result, which uses the another method, was present in [8]. =

4. Stochastic oscillator.

In the beginning we investigate the stability of a simple oscillator,
defined by a deterministic equation of second order

¥+ 29e% + (1 + oA + eh cos2t) x =0 (4.1)
The small parameter £ simplifies the analyse of the stability. If we use
the vector forms, then, by the method of the last section

dx

g = (A, + ea (y(2)) + ezﬂz) b (4.2)

Here A{y(t)} is a *‘Markov'’ precess on [0,m] with a C-infinitesimal
operator (£v)(y}=dv(y)/dy in the space of continuous functions which

satisfy the condition v(0)=v(w). The matrix 4 , Ai and A are

2
_ oo] _,[oo - 01 _[o o
Al(y) = -h cos2y [1 o] A[l o]’ A 5 [_1 0], A2 [0 2?].

The operators ﬁo‘ ﬂl, ﬁz in the space V of symmetric matrix functions,

which satisfy the condition v(0)=v(n), have the forms

_ [0 -1 0 =] dql(y)
(4.q)(y) = [1 0]q(y) . q(y][_l O] ¢ 220,
0 o]
(aﬂlq)[yJ = (-h cos2y-A) [[0 é]q(y] + q(y}{l g”,
0 0 o 0
(sﬂzq)(}') = - [0 27}:{(.}’) - gl(y) [0 27].

If we define a scalar product in ¥ with

<p,@> = — [ 5p plylq(y) dy,
then

dy
It is easy to check that the number zero is an isolating point of the

0 -1 d
P ) = [ gJetn + pin (] 7] - 2L,

specter of ﬂo with the multiplicity 3, and a base is of the form
F ={f ,f ,f_}, where f =],
o 17 2'73 1




f2= [_é ?}cosay + [? é]sinZyj f3 = [_é ?]SiHBy = T? é]cosEy.
The conjugate base Fz has a column form Fz={f /2,f2/2,f3/2}. It
E={q1,q2,q5}, then Ezo@ denote a matrix witz elements 5= f: fj(y)qk(y) day,
Jj>ke{1,2,3}. It 1s easy to check that FDuFO=I. Now we shall use the
algorithm from the Corellary 3.1 and make Ale) from the equation
(ﬂ0+3ﬂ1+sﬂ2](ﬁo+aF1+...) = (F0+€F1+...)(AG+EA1+...)
From the {irst eguation dofdﬁﬁho we find A0=0' The second equation has
the form
JCEL:F0A1_41FO'

From the conditions for normal solvability we find

H s} 0 h/2
A =F«dF = |o o -Af.
1 o 10
hs2 A o]

For A2<h2/4— we have U(A1)={?, +v h2/4—A2 }— i. e. the trivial solution

(4.1) is not stable. This is a corollary of parametric rescnance: with a
small change of the frequency A and a small deviation (the coefficient for
x is propoertional to ez), some of the solutions of (4.1) exponentially
increase.

Now, let A=0 and {y(f), t=0} be a diffusion Markov process on [0, 2w]
with a C-infinitesimal operator

2 2
[ Cpt = 3 AL, BV,
dy 2 dy

In this case, the number zero is a point of the specter of multiplicity

one, and consequently, a base EU consist of an unite matrix I. let F(e) =

I+ef1+agf2 +oay - Then Ab=0 and for finding f1 and fé we have the equation
Adf =AT - 41
01 1 1

Using the condition of the orthogonality of the right-hand side to the
¥
kernel of the operator ﬂo, in which there is only one element, we cbtain
A =0. Then from the equation
{Aofll[y] = —[ﬂifoj(y]. (4.3)
we find fl(y). This solution has the form
—i{a. 2, i b b
fi(y) —[alan] cos y +[b1b2
2"3 2 3
and putting it in (4.3), it is possible to find all 2 and b . Further,
j

] gsin v

for finding fé and Ab we have the egualtion
df = AT -dFf ~ 41
o 2 2 171 P

Again, from the condition of normal solvability, we have

4
2 o (o +84)
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- ho of+32 - R . .
So, for ¥ » — ——————— a trivial solution is exponentially stable in the

2, 4
2 o« (e +64)
mean-square, disregarding the existence of a parametric resonance. It

seems that for a stability, the existence of a diffusion rushing’'' of a

phase is useful - it allows Lo escape the resonance.

We shall give one of the possible method for the analyse of
exponential p-stability of a stochastic oscillator, described by an
equation

X+ Z[gél(y()t} + szﬁﬁ(y{t)J]i
+ (1 + eg (y(1)) + g, (y(t))1x = 0, (4.4)
where {y(t), t=0} is a Markov process on a compact ¥ with C-infinitesimal
operator ¥. Let the functions SliyJ, Sz(y). g](y), gz(y) be continuous on
b ce[D,sO]. let us make = substitution x=r cos ¢, x=-r sin ¢ and use

polar ccordinate r and g:

r=r lea (¢, y(2)) + 272 (e, y(t)], (4.5)
o =1+eblpy(t)) + szbalw,y(i)), (4.6)
where
a lp,y) = - Si(y)(1~c052w) + % gj(ylsinEW,
bj(wsY) = i éj(y)sinzw + % gj(y)(1+c092$), j=1,2.
&

Because of the periodicity of the right-hand side of (4.6) in ¢ with the
period m, it is possible to consider a pair {@(t),y(t), tz=0} as a Markov
process on the compact ¥x[0,n) with C-infinitesimal operator T, defined on

DT) ¢ C(¥x[0,m]) with

(rwl(p,2) = (T (e, y) + e(TwWllpy) + e*( rw) (g, y), (4.7)
where
(rwile,y) = Uwéziij-+ (ﬂyw)(w,y],

awle,y) .
) = L BRseS  pagig
{ Jw}(@,}) bj(m,y) 7 J

and the operator Ey is a C-infinitesimal operator of Markov process {yit),
+20}, laking effect on the elements wig, y) of the space C(¥x[0,n]) on the
second argument. We make a substitution u=r?, for pr0, in (4.5):
u =u [ep(al(w(t}.y(t)) + e(ag(@(t).y(t)))]

and investigate the mean-square stability of the equation (4.8), using the
result of preceding section for n=1. If we rewrite the operator £ of (2.4)
for the equation (4.8), and use (4.7), then we get

() (g, ) = (4v)(p.y) + & (4v)(p,y) + e (4 V) (p.¥),

where & =I" ,
Do




(ﬂjv)[¢,y1 = fFjV)(W,y) + 2paj(@,y]v(w,y), g=1.,2.

Since D(F1]=@(F2)c®(rﬂ], and the operators Fl and Fz are Fo—limited on the
graph of the operator I’/ [5], it follows that the family of operators
{ﬂ°+edj+52£2} is homomorphy at the point £=0 [5]. Now it is possible to
use the results of [5] for an analyse of Lyapunov equation (3.8) for n=1

(a4 + ed+ “d)q) (o, y) = -1 (4.9)
If we exchange a little the proof of the Corollary 3.2, we shall give
necessary and sufficient conditlion of the exponential stability in the
mean-square of the trivial solution of the equation (4.8) in the form

AL Q
T e,y 2 [ squ(w,yl > 0, Yee[0, ], Vye¥,
k=-d

where

qC is » main part of Maclaurin series for the solution (4.9). Now, we
shell describe an algorithm for an analyse of the stability in the case

d<2. If we substitute (4.10) in (4.9) for d=1, then

8q_, (¢.y)
e PR i (F q_l)(w,y] =0, (4.11)
ae ¥
aq (9, y)
2 + (2g)le,y) = -(dq ey -1 (4.12)
y 0 17°-1

el
Since we want to confirm the condition for the normal solvability, we need
a kernel of conjugate operator

8g (¢, ¥) x
-+ [fyg)(w,c) = 0, (4.13)

dp
where glg,C) 1s a function of two arguments: ¢el0,n) and a set C from the
o-algebra ZV of Borel subsets on the compact Y. If the Markov process
{y(t), t=0} is uniformly ergodic, a solution (4.13) must be an invariant
measure (C) of this process, and a solution of the equation (4.11) can be
expressed by method of separation of variables, using tensor product
cilo,nl)ec(N). If {y(i), t=0} is uniformly ergedic it follows q;l(w,y)Eﬁ

and the condition for the solvability of the second equation has the form

25 % S5, (Iuldy) = -1,

From that, it is easy to obtain the conditieon of stability: a>0 or

5 & (yuldy) > O.
vy !
We got the result which was described in Coreollary 3.1 in somewhat

different situation: If a mean value (for stationary measure of the

process {y(t)}) of diffusion coefficient 6](y) is positive, then the
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trivial solution of (4.5) is exponentially stable in the mean-square, for
each p>0. Note that

E{lu(t) 1% = ECCIx(8) 1% + 1x(2)1H)P,

i. e. the exponential stability in mean-square of the trivial solution of
(4.8) 1is equivalent to the exponentially 2p-stability of the trivial
solution of (4.4). Now, let

J 8 (yuldy) = 0.
gy !
Then, instead of (4.11)-(4.12) we should use a system of equation

8q_,(¢,y)
= (&g (gy] =0, (4.14)
8¢ Y
8g_ (p,¥)
4+ (£q )y = ~(dg )y, (4.15)
y -1 17-2
dp
aq_ (9, y)
;T + (£q)(0,y) = ~ldg )p.y) - (4g )(py) = 1. (4.16)
In our case q_z(¢,y)Ea and
(ﬂ1§)[¢.yl = 2p&{—61(y)(1vc032m] + % gi(ylsinzw}. (4.17)

Let us find q_l(w.y] from (4.15) (for q_z(w,y)=§ ), put it in (4.16) and
determine conditions of exponentially Zp-stability of the trivial seolution

of (4.4) if the form a>0‘ where & can be find from an equation
(s
A
= b (g, ¥)
™ ) v 1

+2p7 |\ [1-8,(9) + Jg (1)1 utay) = -1.
Y

ag (g, ¥)
. + 2pa (¢, ¥)g (¢, )} pldy) dp
a@ 2 -1

In order to solve (4.15), it is convenient to present g_l(w,yj as a
Fourier series of variasble ¢ od the segment [0,w] and the form of
right-side (i. e. (4.17)). Note that in the first integral in (4.18) we

have use only the first addend in
g_ltqp.y) = Dg[y) A+ Dl(y)cos?.fp + Blly)sin2go E

i. e. ai(w,y) and bi(w,y) have only those addends. As a conclusion we
shall give a note about asymptotic stability of trivial solution of (4.4)
with probability one. Using mertingale methods, analogously [9], it is
possible to prove that the exponentially p-stability with p>0 guarantee an
asymptotic stability with probability one. Then, for small enough p>0 in
(4.18) only the addends which have p in the first degree,, determine the
sign of number E, i. e. this formula, for small p>0, can be considered in

2. simpler form
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™
1 J [ (28 (ylcosZp + g (y)sin2e) q (¢, y) pldy) dp
T o ¥ 1 1 -1

+2pq [ [-8,(3) + L g (3] play) + 0(p%) = -1. (4.19)
il
; 1 T 1 i1 .

From (4.18), for —- J, cos2e q_l(@,yJ dp = zl(y] and — fo sin2g

wpq wpg
q_l[w,y) de = zz(y}, we have a system of equations

222(y} + (#Lzl)(y) = ~fl(y).
-2z, (y) + (£2)(y) = - g (3), (4.20)

From that, the conditions of asymptotic stability with probability one can
be set in the form

Jo A2z2(y)8(y) + 2(p)gly) + gly) - 28(y)} uldy) < o.
Note that the conditions of uniform ergodicity guarantee the existence and
unlgueness of the solution of the system (4.20), i. e. the specter of the

operator Ey, beside zero, does not have other points on the imaginary axe.
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