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Abstract. Some  results concerning O-spaces and (strong) I-spaces  are
extended to higher cardinals.

0. Introduction and definitions

Several cardinal functions were defined and studied as extensions of
some classes of generalized metric spaces to higher cardinalities (see [4],
[71, [81, [11], [13], for example). In this paper we present some results
of the same type.

In 1370 (ses [101), E. Michael introduced the concept of a o-locally
finite mapping and announced some results regarding such mappings. In [10]
he proved, amcng other, that a repgular space X is a o-space (resp., strong
S-space) if and only if it is the image of = metrizable space (resp., para-
compact p-space) under a o-locally finite mapping.

Here we define t-Jocally finite mappings, T an infinite cardinal, and
extend these results to higher cardinalities. We also give some other
results concerning cardinal functions connected with t-lccally finite map-
pings ; those functions extend some classes of generalized metric spaces to
higher cardinalities.

We begin with the definitions and notations which we will need.

0.1. Notations and terminology in this paper are standard as in [2],
[2]. All spaces are regular T1’ all mappings are continuous surjections and
all cardinals are infinite. St(x,U) denotes the star of a point x & ¥ with
respect to a cover U of X. For a cover U of X and x € X ord(x,U) = T means

that x is in at most =T many members of U. A family ¥ of subsets of X is said
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to be t-discrete (t-locally finite) if it is the union of 7 many discrete
(locally finite) collections.

0.2. ([4]) The metrizability degree m(X) of a space X is the smallest
cardinal T such that there exists a t-discrete (or equivalently, t-locally
finite) base for X.

0.3. ([13]) The o-degree of = space X, denoted by o(X), is the smallest
cardinal T such that X has a t-locally finite network.

0.4. The diagenal degree A(X) (resp., the star-diagonal degree A*(X])

of a space X iz the smallest cardinal T such that there exists a family

{ﬂ“:m € 1} of open covers of X so that {x} = n{St(x,ﬂa):m e Tty (resp., {x}
n{St{x,ﬂa}:a € 1}) for every x € X.

0.5. ([11]) The Moore degree dv(X) of a space X 1s the smallest cardi-
nal T for which there is a family (ﬂa:a € 1t} of open covers of X such that
the collection {St(x,ua]:a e 1} is a local base for each x € X.

0.6. ([13]) The subparacompactness degree spal(X) of a space X is the
smallest cardinal T such that every open cover U of X has a t-discrete open
refinement.

0.7. If v is a regular cardinal, then a Tychonoff space X is said to
be T-metrizable, or linearly uniformizable, if there is a unifornmity gene-
rating the topolegy of ¥ and having a well-crdered base of order type T.

0.8. ([8]) The Arhangel’skii number A(X) of a space X is the smallest
cardinal T such that there exist a T-metrizable space Y and a perfect map-

ping £ from X onto Y.

0.9. DEFINITION. Lef T be a cardinal., A mapping 7:X - Y is said to be
t-locally finite if every t-locally finite (not necessarily open or closed)
cover P of X has a refinement R such that f(R) is a t-locally finite colle~
ction. m

Note that for 7 = w we obtain Michael’s notion of a o-locally finite

mapping.

0.10. DEFINITION. A family % of subsets of X is called a Qr—network
(resp., K-network) for X if for every x € X there exisls a closed initially
t-compact (resp., compact) subset C < X such that for any neighbourhood U

x

of C there is a member F € ¥ such that Gx cFclU =
x

The notion of a K-network was introduced by Michael (see [3}) under

the name "(modk)-network; I. Juhasz calls this a K-network.

0.11. DEFINITION. The Z-degree Z(X) and the strong Z-degres sZ(X) of a

space X are defined as follows:
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Z(X) = min{t: X has a t-locally finite (& t-discrete) QT—network},

s3(X) = min{T: X has a t-locally finite (& t-discrete) K-network}. m

Note that a space X is a EZ-space (strong Z-space) if and only if Z(¥) =
w (sZ(X) = w).

1. Characterizations of o(X) and sZ(X)

The fellowing assertion can be verified by a straightforwerd cheking.
1.1. PROPOSITION. Lef f:X » Y be a t-locally finite mapping. Then:
(i) o(¥) = v implies o(Y) = 1; (ii) sE(X) = 7 implies s3(Y) = 7. m

We also need the following result.

1.2. PROPOSITION. For every space X we have (i) spa(X) = sE(X) = o(X)
and (ii}) sZ(X) = A(X).

Proof. (1) The inequality sZ(X) = of(X) is trivial. Let us prove the
first one. Let sZ(X) = Tt and let ¥ = u{?m:a € T} be a t-locally finite K-
network for X¥. Take an arbitrary open cover U of X. Every F € ¥ 1s covered
by finitely many elements U1(F),...,Uk[F) of %; in this case we put

v =F AU(F) =A{FnU(F:FeF}, (xeT, i =X%),
w,i o 1 i o
W=u{lV aeT, ie w.
®, 1

Since every Vﬂ , (we T, 1 k), is locally finite, we have that ¥V is a -

A
locally finite collection. On the other hand, obviously, every Va ; is an
open refinement of U. Let us prove that V is a cover of ¥. Let x € X. If C
X
is a compact set containing %, then there exists a finite U = (Ul,...Jﬂ}
4

c U so that % e Cx ¢ Fc Wi’ for some F € ¥. But, vil’= W{F n Ui:i = k} ¢

1A

u{Va.i:a €T, 1Lew =V, i.e. V is a cover for X This means spa(X) = T.

(ii) Let A(X) = 7 and let f be a perfect mapping from X onte a T-met-
rizable space Y. Since m(Y) = t© there is a t-locally Tinite base B for Y.
We will prove that fri(ﬂ) is a z-leocally finite K-network for X. Clearly,
£71(B) is locally Ffinite and avery w € ¥ belongs to the compact set £ (%)
= Cx. If U is a nelighbourhood of Cx, then ¥ \ £(X \ U) is a neighbourhood
of £(x) so that there is some B € B with f(x) € B« ¥ \ f(X \ U). Therefore,

€ = FHUR) c U, i.e. sE(X) =T, w

1.3. THEOREM. For a space X, o(X) = v if and only if X is the image cf

a space Y with m(Y) = v under a t-locally finite mapping f.
|

Proof. Let o(X) = r and let 4 = U{ﬂa:m € T} be a T-locally finite closed
network for ¥. Define a new topology on X by taking £ to be a base for this
topology and denote by Y the set X with that topology. ¥V is a regular space
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since every member of # is open and closed in Y. Since Y has a tT-locally
finite base, we have that m(Y) = 7. The identity mapping f = idX:X > ¥ 1Is
continuous, bacause £ is a network for X. It remains to prove that f is

t-locally finite. Let P = u{?a:a € T} be a tT-locally finite cover for Y.

Let U be an open cover of Y such that every U € 1 intersects only finitely
many members of ?a’ ¢ € . It is understood that one can take U ¢ 4. Put ¥
={PnUPe?P UelU. We have that ¥ is a refinement of both P and U. So,
f(#) is t-locally finite in X, because U is t-locally finite.

Conversely, let f:Y » X be a t-locally finite mapping and m(Y) = =.

Since oY) = m(Y) = 7, then, by Proposition 1.1, o(X) = 7. =

dinality version of Michael’s method from [9]; the same method was used in

the author’s papers [5] and [B].

1.4. THEOREM. Let T be a regular cardinal. Then sX(X) = T if and only

if it is a t-locally finite image of a space Z such that A(Z) = T.

|
The method used in the proof of the following theorem is =z higher car-

|

|
Proof. lLet X be a T-locally finite image of a space Z with A(Z) = T.

According to Propesition 1.2, sZ(Z) = A(Z) = 7 and sZ(X) = sE(Z) = T.

let sZ(X) = 1 and let ¥ = U{?u:m € 1} be a T-locally finite closed
K-network for X (we assume that the intersections of < T many members of ¥
are in ¥). It is convinient to write ¥ = {FA:A € A}. Let A be topologized
by the discrete topology. Consider the set A" and its subset Y consisting

of all y = (ha:a e t) for which {F\ i € T} is a (decreasing) K-network for
@
some compact Cy < X. (Let us note that such a K-network has cardinality = T

as can be easily seen.) The topology on Y is generated by the "natural to-
pology" (see, for example, [B]) on AT defined by the base B consisting of
the sets

= = . ) i = =
Bmly] {p (gm.m eT) e Y.NB A, fer Beal, yeV, aer.

Denote by U the collection of all sets Uch Y x Y of the form:
Ua = {[(pm],(ha]) €Y x ¥Y: Mg = AB for B € a}, a € .
This collection is a well-ordered base of a uniformity U on Y generating
the "natural topology"; since |U| = 7, Y is a T-metrizable space. Put now
Z={(x,y) e Xx Y:x ¢ Cy for some compact szt Cy & %),
and denote by f and g the projections of Z'onto X and Y, respectively.

Claim A. fgll(Ba(y)) =F, , where y = (A ;e €T) €Y, axer.

: o
o
-1 _ - . =
If p e Ba(})’ then fg (p) Cp c F“m Faa, i.e. Bm[yJ c FAa. Conver
sely, let p e FA . Then p € K for some compact set K ¢ X with p € K ¢ Fh g
o o
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Let {FH v € T} be a network for K; we may assume B, = AU for v € . If one
v
takes q = (pu:v e ) we will have g = Ba(y), pe kK= fg_l[q) and, therefore,

Fy < fg_l(Ba(y)). The claim is proved.
: Claim B. g is a perfect surjection.

From the definition of g it follows g '(y) = C x {y} so that g is a
compact surjection. We are going to prove that g isyclosed. Let v € Y and
let W ¢ Z be a neighbourhood of the compact set g_l(y) = C x {y}. By the
well known theorem of Wallace [2] one can find neighbourho;ds U of Cy and

Bm(y) of y for which Cy » {v} ¢ (U x Ba(y)} nZcW Let {FA e € Tt ¢ ¥ be
oL

2 network (in X) around C . We can find 8 € 7, B = &, for which C < F, <
¥ v

g

U holds. Using Claim A we obtaln

-1 —_ { I3 L
g (Ba(yJ) = (Fha ® BBLy)J nZc (Ux Ba(y]} nZcH,
which means that g is closad.

Claim C. g '(B) is a K-network for Z.
Let z = ({x,y) € Z. Then z ig in the compact set K = g—l[yJ = Cy e
z
If W ¢ 2 is a neighbourhood of Kt’ then, as in the the proef of Claim B,

there is a BB{y] e ® such that K1 c g_l(B {y¥)) ¢ W, which proves the claim.

Claim D. f is a t-locally finite maﬁlingu

Let ? = U{?a:a € 7} be a t-locally finite cover of Z. Let ¥ be an open
cover of Z such that eﬁ?h H € # intersects only finitely many members of ?a
for @ € v. Denote by H the collection of all finite unions of elements of
#. Since ¥ = g_l(ﬂl is a K-network for £ and Hw is closed under finite uni-
one, R* has a refinement R ¢ ¥ and so f(R) is T-locally finite by Claim A.
Pul R* = {PnQ:Pe? 0QeR. Then ﬂ* is a refinement of % and f{?*] is a
T-locally finite collection in X. Hence, f is 7-locally finite.

The proof of the theorem is completed. =

2. Two factorization theorems

In 1971, T. Shiraki (see [3]) proved that a space X is a o-space if

and only‘if it is a E-space with a Ga—diagonal. Now we will extend this

result to higher cardinality by proving the following factorization theorem.

2.1. THEOREM. For every space X we have o(X) = Z(X)A(X).

Froof. Obviously, A(X) = ¢(X) and Z(X) = o(X) so that Z(X)A(X) = o(X]).
Let Z(X)A(X) = 7. Let {ﬂ“:m & T} be as in the definition of A(X) =71

and ¥ = u{?a:a e 1} o t-discrete Qr—network for X. Every member of ¥ is
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initially t-compact and its diagonal degree is = 1. By a result of P.K.Hart
[11] (which states that every initially T-compact space Y with A(Y) = ¢ is
compact), every F € ¥ is actually compact so that sZ(X) = T. By Proposition
1.2 we have spa(¥) = 7. As was remarked by Unger in [13], then A*[X] =
epa(X)A(X) = v. That says that, without loss of generality, we may assume
that (ﬂa:a € T} satisfies the conditions in the definition of A¥(K} £ T,
Since gpa(¥) = 1, let Va = u{ﬂmﬁ:ﬁ = th, « € 7T, be a T-discrete closed re-
finement of Ha. Put

L

o= = . F‘ - s .
ABy V&E A ﬁg iVaF:Ve VRB’ € ?T}, (x,B. ¥ € T)

dearly, W iz discrete for every o,8,7y € T because V
¥ W one Y By f

remains to prove that W = U{W&B?:Q’B’W € ©} is a (t-discrete) network for X.

and ¥ are. It
(s

Let x € X, U a neighbourhood of %. Pick a compact set Cx containing x. But,
for the compact set Cx one has m(Cx) = A(Cx) = A(X) = 7 (see Corollary 1.8
in [11]1), sc that dv(Cx) = m(¥X) = v [11]. Hence, we can assume that {ﬂa:a e
T} satisfies the definition of dv(X) = <. So, there exists a« € v such that
EETQTﬂ;T n Cx c Un Cx. For every y « Cx N U there exists an open set Vy
containing y and satisfying Vy n St(x,ﬂa) =@ Take 3y € T and F € ¥ such
that CK ¢ FecUu [u{Vy:y = CX N UM} and V e Fm with ¥ € ¥ ¢ St(x,ﬂa). of

course, ¥ nF W and, as is easy to check, x e VA F ¢ U. So, o(¥) = 7. ®

The following iz a generalization (to higher cardinals) of the condi-
tion (1.5) from [11].

2.2. DEFINITION. ([8]) The strong separating cover degree of z space X,
denoted by ssc(X), is the smallest cardinal T such that there exists a (not
necessarily open) cover P of X with ord(x,?) < T for each x € X and such
that if %,y & X, x # y, then there is a finite F ¢ P such that x e int(Ju¥)

and y ¢ U¥. a

Now we will give the following factorization theorem (which should be
compared with Theorem 5.2 in [1]). Recall that a space X is T-additive if

the intersections of less than T many open sets in X are open.

2.3. THEOREM. Let T be a regular cardinzal. For a T-additive space X we
have o(X) = v if and enly if sS(X)ssc(X) = T,

Proof. (a) sZ(X)ssc(X) = o(X). (For this part we need not the t-additi-
vity of X.) Let o(X) = 1. Since s¥(X) = ¢(X) we will prove ssc{X) = 1. Let
d = u{&a:a & T} be a z-locally finite closed network for X, where every ﬁa
is a cover for ¥ and X e ﬁw, o € t. For each « € T and each B ¢ 4 let

P (B) = nB N\ uld N\ B,
o o
P o= AP (B):B < d },
® o

o
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P = U{?m:m e Tr.

Let us prove that ? witnesses that ssc(X) = t. It is esasy to see that for
every o € T, ?“ is a disjoint cover of X, so that ord(x,?“) = 1t for each x
in X. Suppose %,y € X, ¥ # y. Choose A € T such that y € A, x ¢ A for some
A e &A. For every z € X put EZ = {B € ﬂhz z € BY. It is understood, Bz is
finite. If % = {Ph(ﬂ):ﬂ (e ﬂx}. then ¥ is finite and ¥ < ?A c P. Let us show
that & is the desired collection from the definition of ssc(X), i.e. that
x € int(u¥), y ¢ ¥

(i) %x € int(uF). Let U = X A\ LJ(SJJPt N ﬁx). Then U is open and contains
®. So, for the preoof of the claim it is enough to show U = . 1If z e UF,
then z e PA(B*) for some B* c $x. sa that z = Ph(ﬂ*) c X\ u(ailA \ B*] c X\
u(ﬂa N\ ?x) =U, L.e. UF ¢ U If z € U, then %Z < ?x and 50 Ph(ﬁz) e ¥, as
Z € Pliﬁz], one has z € U¥, i.e. Uc uF. Hence, U= uZ.

(ii) y ¢ u¥. Since B < ﬁx we have A ﬂk N B so that Pl(ﬂ) c ¥ N A and
thus y # Ph{ﬁ) and consequently y & U%.

So, we have proved ssc(X) = 1, i.e. sEZ(Xlssc(X) = o(X).

(b) o(X) = 3Z(X)ssc(X). Let sZ(X)ssc(X) = T. According to Theorem 1.4
there are a T-metrizable space Y, a space 2 ¢ X x Y with A(Z) = 7 and a -
locally finite mapping f:Z2 - X. As ssc(Y) = o(¥) = m(Y) = t and ssc(¥) = T,
we have ssc(X x Y) = 1, so ssc(Z) = t. Moreover, Z is T-additive because
X x Y is such a space and A(Z) = 1. By Theorem 2’ in [8] then A(Z)ssc(Z) =
m(Z) = 7. According to Theorem 1.3 we have o(X) = v and the proof of the

theorem is completed. =

The paper [8] contains some other results involving ssc(X].
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Lj.D. Kocinac
JEDNA KLASA PRESLIKAVANJA I KARDINALNE FUNKCIJE

Za proizvol jan kardinal Tt definise se klasa v-lokalno konaénih presli-
kavanja koja predstavlja generalizaciju klase co-lokalno konaénih preslika-
vanja koja je uveo E. Michael. Posredstvom takvih preslikavanja definisu se
i karakteridu kardinalne funkcije. Koristed¢i te funkcije dokazuju se dve
faktorizacione teoreme za kardinalne invarijante.

Ljubisa Kocinac

ul. 29. novembra 132
37230 Aleksandrovac
Yugoslavia
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