We prove that the neutrix composition $\delta^{(s)}\{[\exp_+(x)-H(x)]^{1/r}\}$ exists for $r=1,2,\cdots$ and $s=0,1,2,\dots$ and in particular $$ \delta^{(mr-1)}\{[\exp_+(x)-H(x)]^{1/r}\}=\sum_{k=0}^{m-1}\frac{(-1)^{mr+k-1}r(mr-1)!c_{mr-1,k}}{2k!}\delta^{(k)}(x), $$ for $m,r=1,2,\dots$.